1
|
Perasoli FB, B Silva LS, C Figueiredo BI, Pinto IC, F Amaro LJ, S Almeida Bastos JC, Carneiro SP, R Araújo VP, G Beato FR, M Barboza AP, M Teixeira LF, Gallagher MP, Bradley M, Venkateswaran S, H dos Santos OD. Poly(methylmethacrylate-co-dimethyl acrylamide)-silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine (Lond) 2024; 19:1285-1296. [PMID: 38722243 PMCID: PMC11285241 DOI: 10.1080/17435889.2024.2345044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024] Open
Abstract
Aim: To investigate whether medical devices coated with a synthesized nanocomposite of poly(methylmethacrylate-co-dimethyl acrylamide) (PMMDMA) and silver nanoparticles (AgNPs) could improve their antibiofilm and antimicrobial activities. We also investigated the nanocomposite's safety. Materials & methods: The nanocomposite was synthesized and characterized using analytical techniques. Medical devices coated with the nanocomposite were evaluated for bacterial adhesion and hemolytic activity in vitro. Results: The nanocomposite formation was demonstrated with the incorporation of AgNPs into the polymer matrix. The nanocomposite proved to be nonhemolytic and significantly inhibited bacterial biofilm formation. Conclusion: The PMMDMA-AgNPs nanocomposite was more effective in preventing biofilm formation than PMMDMA alone and is a promising strategy for coating medical devices and reducing mortality due to hospital-acquired infections.
Collapse
Affiliation(s)
- Fernanda B Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luan S B Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruna I C Figueiredo
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Isabelle C Pinto
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Lorrane J F Amaro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Juliana C S Almeida Bastos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Simone P Carneiro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vânia P R Araújo
- Nano Lab, Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Felipe R G Beato
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Ana P M Barboza
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luiz F M Teixeira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maurice P Gallagher
- School of Biological Sciences, University of Edinburgh, King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Seshasailam Venkateswaran
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Orlando D H dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
2
|
Zhang H, Lin X, Cao X, Wang Y, Wang J, Zhao Y. Developing natural polymers for skin wound healing. Bioact Mater 2024; 33:355-376. [PMID: 38282639 PMCID: PMC10818118 DOI: 10.1016/j.bioactmat.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Natural polymers are complex organic molecules that occur in the natural environment and have not been subjected to artificial synthesis. They are frequently encountered in various creatures, including mammals, plants, and microbes. The aforementioned polymers are commonly derived from renewable sources, possess a notable level of compatibility with living organisms, and have a limited adverse effect on the environment. As a result, they hold considerable significance in the development of sustainable and environmentally friendly goods. In recent times, there has been notable advancement in the investigation of the potential uses of natural polymers in the field of biomedicine, specifically in relation to natural biomaterials that exhibit antibacterial and antioxidant characteristics. This review provides a comprehensive overview of prevalent natural polymers utilized in the biomedical domain throughout the preceding two decades. In this paper, we present a comprehensive examination of the components and typical methods for the preparation of biomaterials based on natural polymers. Furthermore, we summarize the application of natural polymer materials in each stage of skin wound repair. Finally, we present key findings and insights into the limitations of current natural polymers and elucidate the prospects for their future development in this field.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
3
|
Kowalewska A, Majewska-Smolarek K. Eugenol-Based Polymeric Materials-Antibacterial Activity and Applications. Antibiotics (Basel) 2023; 12:1570. [PMID: 37998772 PMCID: PMC10668689 DOI: 10.3390/antibiotics12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Eugenol (4-Allyl-2-methoxy phenol) (EUG) is a plant-derived allyl chain-substituted guaiacol, widely known for its antimicrobial and anesthetic properties, as well as the ability to scavenge reactive oxygen species. It is typically used as a mixture with zinc oxide (ZOE) for the preparation of restorative tooth fillings and treatment of root canal infections. However, the high volatility of this insoluble-in-water component of natural essential oils can be an obstacle to its wider application. Moreover, molecular eugenol can be allergenic and even toxic if taken orally in high doses for long periods of time. Therefore, a growing interest in eugenol loading in polymeric materials (including the encapsulation of molecular eugenol and polymerization of EUG-derived monomers) has been noted recently. Such active macromolecular systems enhance the stability of eugenol action and potentially provide prolonged contact with pathogens without the undesired side effects of free EUG. In this review, we present an overview of methods leading to the formation of macromolecular derivatives of eugenol as well as the latest developments and further perspectives in their pharmacological and antimicrobial applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
4
|
Marcut L, Manescu Paltanea V, Antoniac A, Paltanea G, Robu A, Mohan AG, Grosu E, Corneschi I, Bodog AD. Antimicrobial Solutions for Endotracheal Tubes in Prevention of Ventilator-Associated Pneumonia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5034. [PMID: 37512308 PMCID: PMC10386556 DOI: 10.3390/ma16145034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Ventilator-associated pneumonia is one of the most frequently encountered hospital infections and is an essential issue in the healthcare field. It is usually linked to a high mortality rate and prolonged hospitalization time. There is a lack of treatment, so alternative solutions must be continuously sought. The endotracheal tube is an indwelling device that is a significant culprit for ventilator-associated pneumonia because its surface can be colonized by different types of pathogens, which generate a multispecies biofilm. In the paper, we discuss the definition of ventilator-associated pneumonia, the economic burdens, and its outcomes. Then, we present the latest technological solutions for endotracheal tube surfaces, such as active antimicrobial coatings, passive coatings, and combinatorial methods, with examples from the literature. We end our analysis by identifying the gaps existing in the present research and investigating future possibilities that can decrease ventilator-associated pneumonia cases and improve patient comfort during treatment.
Collapse
Affiliation(s)
- Lavinia Marcut
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Intensive Care Unit, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Veronica Manescu Paltanea
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Iuliana Corneschi
- Romfire Protect Solutions SRL, 39 Drumul Taberei, RO-061359 Bucharest, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
5
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Chen X, Ling X, Liu G, Xiao J. Antimicrobial Coating: Tracheal Tube Application. Int J Nanomedicine 2022; 17:1483-1494. [PMID: 35378882 PMCID: PMC8976493 DOI: 10.2147/ijn.s353071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common and serious nosocomial infection in mechanically ventilated patients, increasing mortality, prolonging the patient length of stay, and increasing costs. In recent years, extensive studies on ventilator-associated pneumonia have shown that tracheal intubation plays an essential role in the pathogenesis of VAP, with the primary mechanism being the rapid colonization of the tracheal intubation surface by microbiota. Antibiotics do not combat microbial airway colonization, and antimicrobial coating materials offer new ideas to solve this problem. This paper reviews the current research progress on the role of endotracheal tube (ET) biofilms in the pathogenesis of VAP and antimicrobial coating materials.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaomei Ling
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Gaowang Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinfang Xiao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Jinfang Xiao, Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, People’s Republic of China, Tel +86 198 6518 2069, Email
| |
Collapse
|
7
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
8
|
Iocozzia J, Lin Z. A Clean and Simple Route to Soft, Biocompatible Nanocapsules via UV-Cross-Linkable Azido-Hyperbranched Polyglycerol. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- James Iocozzia
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiqun Lin
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|