1
|
Kunuku S, Lin BR, Chen CH, Chang CH, Chen TY, Hsiao TY, Yu HK, Chang YJ, Liao LC, Chen FH, Bogdanowicz R, Niu H. Nanodiamonds Doped with Manganese for Applications in Magnetic Resonance Imaging. ACS OMEGA 2023; 8:4398-4409. [PMID: 36743038 PMCID: PMC9893453 DOI: 10.1021/acsomega.2c08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Nanodiamonds (NDs) are emerging with great potential in biomedical applications like biomarking through fluorescence and magnetic resonance imaging (MRI), targeted drug delivery, and cancer therapy. The magnetic and optical properties of NDs could be tuned by selective doping. Therefore, we report multifunctional manganese-incorporated NDs (Mn-NDs) fabricated by Mn ion implantation. The fluorescent properties of Mn-NDs were tuned by inducing the defects by ion implantation and enhancing the residual nitrogen vacancy density achieved by a two-step annealing process. The cytotoxicity of Mn-NDs was investigated using NCTC clone 929 cells, and the results revealed no cytotoxicity effect. Mn-NDs have demonstrated dual mode contrast enhancement for both T 1- and T 2-weighted in vitro MR imaging. Furthermore, Mn-NDs have illustrated a significant increase in longitudinal relaxivity (fivefold) and transversal relaxivity (17-fold) compared to the as-received NDs. Mn-NDs are employed to investigate their ability for in vivo MR imaging by intraperitoneal (ip) injection of Mn-NDs into mice with liver tumors. After 2.5 h of ip injection, the enhancement of contrast in T 1- and T 2-weighted images has been observed via the accumulation of Mn-NDs in liver tumors of mice. Therefore, Mn-NDs have great potential for in vivo imaging by MR imaging in cancer therapy.
Collapse
Affiliation(s)
- Srinivasu Kunuku
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Gdańsk 80233, Poland
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Rong Lin
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chien-Hsu Chen
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chun-Hsiang Chang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tzung-Yuang Chen
- Health
Physics Division, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tung-Yuan Hsiao
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Kai Yu
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jen Chang
- Bioresource
Collection and Research Center, Food Industry
Research and Development Institute, Hsinchu 300193, Taiwan
| | - Li-Chuan Liao
- Bioresource
Collection and Research Center, Food Industry
Research and Development Institute, Hsinchu 300193, Taiwan
| | - Fang-Hsin Chen
- Institute
of Nuclear Engineering and Science, National
Tsing Hua University, Hsinchu 300044, Taiwan
| | - Robert Bogdanowicz
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Gdańsk 80233, Poland
| | - Huan Niu
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Galiyeva P, Rinnert H, Bouguet-Bonnet S, Leclerc S, Balan L, Alem H, Blanchard S, Jasniewski J, Medjahdi G, Uralbekov B, Schneider R. Mn-Doped Quinary Ag-In-Ga-Zn-S Quantum Dots for Dual-Modal Imaging. ACS OMEGA 2021; 6:33100-33110. [PMID: 34901661 PMCID: PMC8655898 DOI: 10.1021/acsomega.1c05441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Doping of transition metals within a semiconductor quantum dot (QD) has a high impact on the optical and magnetic properties of the QD. In this study, we report the synthesis of Mn2+-doped Ag-In-Ga-Zn-S (Mn:AIGZS) QDs via thermolysis of a dithiocarbamate complex of Ag+, In3+, Ga3+, and Zn2+ and of Mn(stearate)2 in oleylamine. The influence of the Mn2+ loading on the photoluminescence (PL) and magnetic properties of the dots are investigated. Mn:AIGZS QDs exhibit a diameter of ca. 2 nm, a high PL quantum yield (up to 41.3% for a 2.5% doping in Mn2+), and robust photo- and colloidal stabilities. The optical properties of Mn:AIGZS QDs are preserved upon transfer into water using the glutathione tetramethylammonium ligand. At the same time, Mn:AIGZS QDs exhibit high relaxivity (r 1 = 0.15 mM-1 s-1 and r 2 = 0.57 mM-1 s-1 at 298 K and 2.34 T), which shows their potential applicability for bimodal PL/magnetic resonance imaging (MRI) probes.
Collapse
Affiliation(s)
| | - Hervé Rinnert
- Université
de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | | | - Lavinia Balan
- CEMHTI-UPR
3079 CNRS, Site Haute Température, 1D Avenue de la Recherche Scientifique, 45071 Orléans, France
| | - Halima Alem
- Université
de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Sébastien Blanchard
- Sorbonne
Université, CNRS, Institut Parisien de Chimie Moléculaire,
IPCM, F-75005 Paris, France
| | | | | | - Bolat Uralbekov
- Center
of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, 050040 Almaty, Kazakhstan
- LLP
≪EcoRadSM≫, Al-Farabi Avenue, 71, 050040 Almaty, Kazakhstan
| | - Raphaël Schneider
- Laboratoire
Réactions et Génie des Procédés, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
3
|
Sevim Ünlütürk S, Akdoğan Y, Özçelik S. Mn 2+ ions incorporated into ZnS x Se 1-x colloidal quantum dots: controlling size and composition of nanoalloys and regulating magnetic dipolar interactions. NANOTECHNOLOGY 2021; 32:165701. [PMID: 33533335 DOI: 10.1088/1361-6528/abdb65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A facile synthesis method is introduced how to prepare magnetically active ultraviolet emitting manganese ions incorporated into ZnS x Se1-x colloidal quantum dot (nanoalloy) at 110 °C in aqueous solutions. The reaction time is the main factor to control the hydrodynamic size from 3 to 10 nm and the precursor ratio is significant to tune the alloy composition. ZnS shell layer on the ZnS x Se1-x core was grown to passivate environmental effects. The nanoalloy has ultraviolet emission at 380 nm having a lifetime of 80 ns and 7% quantum yield. The incorporation of Mn2+ ions into the nanoalloys induced magnetic activity but did not modify the structure and photophysical properties of the nanoalloys. Colloidal and powdery samples were prepared and analyzed by electron paramagnetic resonance (EPR) spectroscopy. In the colloidal dispersions, EPR spectra showed hyperfine line splitting regardless of the Mn2+ ion fractions, up to 6%, indicating that Mn2+ ions incorporated into the nanoalloys were isolated. EPR signals of the powdery samples were broadened when the fraction of Mn2+ ions was higher than 0.1%. The EPR spectra were simulated to reveal the locations and interactions of Mn2+ ions. The simulations suggest that the Mn2+ ions are located on the nanoalloy surfaces. These findings infer that the magnetic dipolar interactions are regulated by the initial mole ratio of Mn/Zn and the physical state of the nanoalloys adjusted by preparation methods.
Collapse
Affiliation(s)
- Seçil Sevim Ünlütürk
- Department of Chemistry, İzmir Institute of Technology, 35430 Gülbahçe, Urla, İzmir, Turkey
| | | | | |
Collapse
|
4
|
Wu W, Ren S, Han Q, Gao Y, Kong D. Ultrafast spectroscopic studies of composition-dependent near-infrared-emitting alloyed CdSeTe quantum dots. Phys Chem Chem Phys 2018; 20:23556-23563. [DOI: 10.1039/c8cp03904f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, ultrafast optical properties of composition-dependent near infrared-emitting alloyed CdSeTe quantum dots are measured and analyzed.
Collapse
Affiliation(s)
- Wenzhi Wu
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| | - Shiwei Ren
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| | - Qiuju Han
- School of Science
- Northeast Agricultural University
- Harbin
- China
| | - Yachen Gao
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| | - Degui Kong
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| |
Collapse
|
5
|
Luo Y, Du S, Zhang W, Liao Z, Zuo F, Yang S. Core@shell Fe3O4@Mn2+-doped NaYF4:Yb/Tm nanoparticles for triple-modality T1/T2-weighted MRI and NIR-to-NIR upconversion luminescence imaging agents. RSC Adv 2017. [DOI: 10.1039/c7ra07460c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Core@shell structures of Fe3O4@Mn2+-doped NaYF4:Yb/Tm nanoparticles (NPs) were prepared and then used for in vivo NIR to NIR (980 nm to 800 nm) imaging, and as dual-mode T1/T2-weighted MRI because of the co-existence of Fe3O4 and Mn2+ in the NPs.
Collapse
Affiliation(s)
- Yang Luo
- College of Chemistry & Environment Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Sinan Du
- College of Chemistry & Environment Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Wei Zhang
- College of Chemistry & Environment Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Zhengfang Liao
- College of Chemistry & Environment Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Fang Zuo
- College of Chemistry & Environment Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Shengtao Yang
- College of Chemistry & Environment Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| |
Collapse
|
6
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|