1
|
Li C, Luo H, Chen M, Lin F, Ren X, Huang Y, Zhou L. Bisphenol AF induces cell cycle arrest and apoptosis in TM3 Leydig cells via the p53 signaling pathway. Reprod Toxicol 2025; 134:108882. [PMID: 40089166 DOI: 10.1016/j.reprotox.2025.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Bisphenol AF (BPAF), one of the most common bisphenol analogues, has been reported to exhibit higher estrogenic activity compared to bisphenol A (BPA) due to the presence of additional hydrophobic groups. To comprehensively understand the male reproductive toxicity of BPAF, TM3 Leydig cells were used to investigate the effects of BPAF on cell proliferation, apoptosis, and cell cycle arrest. The underlying mechanisms of cellular responses induced by BPAF were examined through analysis of target mRNA and protein expression. Results showed that BPAF treatment reduced cell viability and induced both G2/M cell cycle arrest and apoptosis in a time- and dose-dependent manner in TM3 Leydig cells. RNA sequencing analysis and experimental verification further revealed that the p53 signaling pathway was involved in BPAF-induced cytotoxicity. Furthermore, Pifithrin-α (PFT-α), a p53 inhibitor, attenuated BPAF-induced G2/M cell cycle arrest and apoptosis. These results demonstrate that the p53 signaling pathway mediates BPAF-induced cell cycle arrest and apoptosis in Leydig cells, providing mechanistic insights into BPAF's toxicological effects on the male reproductive system.
Collapse
Affiliation(s)
- Chenlu Li
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Chen
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Cull ME, Winn LM. Bisphenol A and its potential mechanism of action for reproductive toxicity. Toxicology 2025; 511:154040. [PMID: 39725262 DOI: 10.1016/j.tox.2024.154040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.
Collapse
Affiliation(s)
- Megan E Cull
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; School of Environmental Studies, Queen's University, Kingston, Canada.
| |
Collapse
|
3
|
Rani L, Saini S, Thakur RS, Patel DK, Chowdhuri DK, Gautam NK. Single and combined effect of bisphenol A with high sucrose diet on the diabetic and renal tubular dysfunction phenotypes in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103977. [PMID: 36210596 DOI: 10.1016/j.etap.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In the present study, effect of exposure of bisphenol A (BPA) and combined exposure of BPA + HSD has been investigated on the glucose homeostasis and associated renal complications in Drosophila. Exposure of 1.0 mM BPA alone induced type 2 diabetes like condition (T2D) in adult male D. melanogaster via oxidative stress. Elevated TGF-β signaling was evident by increased expression of baboon (babo) in BPA exposed organism that stimulated the modulation of extracellular matrix (ECM) component collagen IV resulting in the fibrosis of the Malpighian tubules (MTs). Combined exposure of BPA + HSD (high sucrose diet) resulted in the increased magnitude of T2D and MTs dysfunction parameters. Taken together, the study illustrates that BPA has diabetogenic potential in exposed Drosophila that caused adverse effects on their MTs and combined exposure with BPA and HSD could aggravate the renal tubular dysfunction. The study further suggests the use of Drosophila model to study the environmental chemicals induced diabetes mediated renal dysfunction.
Collapse
Affiliation(s)
- Lavi Rani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Sanjay Saini
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
4
|
Fermentation Extract of Naringenin Increases the Expression of Estrogenic Receptor β and Modulates Genes Related to the p53 Signalling Pathway, miR-200c and miR-141 in Human Colon Cancer Cells Exposed to BPA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196588. [PMID: 36235125 PMCID: PMC9572342 DOI: 10.3390/molecules27196588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
The estrogenic receptor beta (ERβ) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERβ. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERβ, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (−3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERβ (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.
Collapse
|
5
|
Knowledge Gap in Understanding the Steroidogenic Acute Regulatory Protein Regulation in Steroidogenesis Following Exposure to Bisphenol A and Its Analogues. Biomedicines 2022; 10:biomedicines10061281. [PMID: 35740303 PMCID: PMC9219931 DOI: 10.3390/biomedicines10061281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The use of bisphenols has become extremely common in our daily lives. Due to the extensive toxic effects of Bisphenol A (BPA), the industry has replaced this endocrine-disrupting chemical (EDC) with its analogues, which have been proven to decrease testosterone levels via several mechanisms, including targeting the steroidogenic acute regulatory (StAR) protein. However, when exposed to BPA and its analogues, the specific mechanism that emerges to target StAR protein regulations remains uncertain. Hence, this review discusses the effects of BPA and its analogues in StAR protein regulation by targeting cAMP-PKA, PLC-PKC, EGFR-MAPK/ERK and Ca2+-Nur77. BPA and its analogues mainly lead to decreased LH in blood and increased ERK expression and Ca2+ influx, with no relationship with the StAR protein regulation in testicular steroidogenesis. Furthermore, the involvement of the cAMP-PKA, PLC-PKC, and Nur77 molecules in StAR regulation in Leydig cells exposed to BPA and its analogues remains questionable. In conclusion, although BPA and its analogues have been found to disrupt the StAR protein, the evidence in connecting the signaling pathways with the StAR regulations in testicular steroidogenesis is still lacking, and more research is needed to draw a solid conclusion.
Collapse
|
6
|
Rajkumar A, Luu T, Hales BF, Robaire B. High Content Imaging Analyses of the Effects of Bisphenols and Organophosphate Esters on TM4 Mouse Sertoli Cells. Biol Reprod 2022; 107:858-868. [PMID: 35596243 DOI: 10.1093/biolre/ioac101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The endocrine disruptive effects of bisphenol A (BPA) and brominated flame retardants (BDE-47) have led to restrictions to their use and increased the pressure to identify safe replacements for these chemicals. Although there is evidence that some of these alternatives may be toxic to spermatogonial and Leydig cells, little is known about the toxicity of emerging replacements on Sertoli cells, one of the major testicular cell types. We used high-content imaging to compare the effects of legacy chemicals, BPA and BDE-47, to their corresponding replacements. TM4 Sertoli cells were exposed for 48 h to each chemical (0.001-100 μM) followed by cytotoxicity and phenotypic endpoint assessment. The benchmark concentration (BMC) potency ranking for bisphenols based on cytotoxicity was BPTMC>BPM > BPAF>BPF > BPS > BPA. Human administered equivalent dose (AED) determination ranked BPS as most potent alternative replacement studied. The BMC potency ranking of BDE-47 and organophosphate esters based on cytotoxicity was TDtBPP>BDMPP>TBOEP>TDCPP>TMPP>TPHP> BDE47 > IPPP=BPDP = TCPP. Additionally, TM4 cell exposure to BDE-47 increased Calcein intensity (57.9 μM) and affected lysosomes (21.6 μM), while exposure to TPHP and TMPP resulted in cellular oxidative stress changes at BMC values as low as 0.01 μM and 0.4 μM, respectively. Overall bioactivity considerations of the chemicals on TM4 via ToxPi analyses and AED modeling further validated emerging replacements as highly potent chemicals in comparison to BPA and BDE-47. These findings demonstrate that many bisphenol and flame retardant replacements are more potent in Sertoli cells than the legacy chemical they are replacing, and that phenotypic parameter assessment is an effective tool in chemical toxicity assessment.
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada. H3G 1Y6
| |
Collapse
|
7
|
Yuan WB, Chen HQ, Li JZ, Zhou SM, Zeng Y, Fan J, Zhang Z, Liu JY, Cao J, Liu WB. TET1 mediated male reproductive toxicity induced by Bisphenol A through Catsper-Ca 2+ signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118739. [PMID: 34953956 DOI: 10.1016/j.envpol.2021.118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) exposure has many adverse effects on the reproductive system in animals and humans. Ten-eleven translocation 1 (TET1) is closely related to a variety of biological processes through regulating the dynamic balance of DNA demethylation and methylation. However, the role and mechanism of TET1 during BPA induced reproductive toxicity are largely unknown. In this study, mouse spermatogonia cell line GC-2 was treated with BPA in the final concentration of 0, 20, 40 and 80 μM for 72 h. The cell model of differential TET1 gene expression was established to explore the role and mechanism. We found that the growth rate of GC-2 cells, and the intracellular calcium level decreased significantly with the increase of BPA dose, while TET1 and Catsper1-4 expression level decrease with a dose-dependent relationship. Furthermore, TET1 overexpression promoted the proliferation of GC-2 cell, the increase of calcium ion concentration, and the expression level of Catsper1-4, while knockdown of TET1 leads to the opposite results. Mechanistically, TET1 expression promoted the hydroxymethylation of Catsper1-4 and reduced their methylation level. In addition, the expression level of Catsper1-4 was positively correlated with TET1 gene expression level in semen samples of the population. Our study revealed for the first time that TET1 gene regulates the expression of related molecules in the Catsper calcium signal pathway through its hydroxymethylation modification to affect the calcium level, thereby participating in the process of BPA induced damage. These results indicated that TET1 gene may be a potential biomarker of BPA induced male reproductive toxicity.
Collapse
Affiliation(s)
- Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
8
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
9
|
Eldefrawy F, Xu HS, Pusch E, Karkoura A, Alsafy M, Elgendy S, Williams SM, Navara K, Guo TL. Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S: Perspectives on ovarian morphology and gene expression. Reprod Toxicol 2021; 103:181-190. [PMID: 34147626 DOI: 10.1016/j.reprotox.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Both bisphenol A (BPA) and its analog bisphenol S (BPS) are industrial chemicals that have been used to make certain plastic products applied in chicken farms, including food and water containers. They are endocrine disrupting chemicals (EDCs) with xenoestrogenic activities and affect reproductive success in many ways. It was hypothesized that BPA and BPS could adversely affect the folliculogenesis in chickens due to their disruption of the estrogen responses, using either genomic or non-genomic mechanisms. This study investigated the deleterious effects of BPA and BPS on the ovaries when adult layer chickens were orally treated with these EDCs at 50 μg/kg body weight, the reference dose for chronic oral exposure of BPA established by the U.S. EPA. The chickens in both BPA and BPS-treated groups showed a decreased number of the preovulatory follicles. BPA-treated chickens showed a significant decrease in the diameter of F1. Additionally, both BPA and BPS treatments increased the infiltrations of lymphocytes and plasma cells in ovaries. Moreover, it was found that the ovaries of BPS-treated chickens weighed the most among the groups. RNA sequencing and subsequent pathway enrichment analysis of differentially expressed genes revealed that both BPA- and BPS-treatment groups showed significant changes in gene expression and pathways related to reproduction, immune function and carcinogenesis. Taken together, both BPA and BPS are potentially carcinogenic and have deleterious effects on the fertility of laying chickens by inducing inflammation, suggesting that BPS may not be a safe replacement for BPA.
Collapse
Affiliation(s)
- Fatma Eldefrawy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt; Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Hannah Shibo Xu
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth Pusch
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Ashraf Karkoura
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Mohamed Alsafy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Samir Elgendy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Susan M Williams
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Kristen Navara
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
10
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. Elucidation of the Effects of Bisphenol A and Structural Analogs on Germ and Steroidogenic Cells Using Single Cell High-Content Imaging. Toxicol Sci 2021; 180:224-238. [PMID: 33501994 DOI: 10.1093/toxsci/kfab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Concerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs). In all 3 cell lines, BPA was one of the least cytotoxic bisphenol compounds tested, whereas BPM and BPTMC were the most cytotoxic. Interestingly, BPF and BPS were cytotoxic only in MA-10 cells. Effects on phenotypic parameters, including mitochondria, lysosomes, lipid droplets, and oxidative stress, were both bisphenol- and cell-line specific. BPA exposure affected mitochondria (BMC: 1.2 μM; AED: 0.09 mg/kg/day) in C18-4 cells. Lysosome numbers were increased in MA-10 cells exposed to BPA or BPAF but decreased in KGN cells exposed to BPAF or BPM. Lipid droplets were decreased in C18-4 cells exposed to BPF and in MA-10 cells exposed to BPTMC but increased in BPF, BPM, and BPTMC-exposed KGN cells. BPA and BPM exposure induced oxidative stress in MA-10 and KGN cells, respectively. In summary, structurally similar bisphenols displayed clear cell-line-specific differences in BMC and AED values for effects on cell viability and phenotypic endpoints. This approach, together with additional data on human exposure, may aid in the selection and prioritization of responsible replacements for BPA. .
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
11
|
Komarowska M, Szymańska B, Ołdak Ł, Sankiewicz A, Matuszczak E, Gorodkiewicz E, Debek W, Milewski R, Hermanowicz A. Plasma level of laminin 5 and collagen IV in cryptorchidism. Adv Med Sci 2020; 65:176-181. [PMID: 31978696 DOI: 10.1016/j.advms.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/15/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Laminin 5 and collagen IV are the main compounds of the extracellular matrix of the germinal epithelium. The purpose of this study was to evaluate the concentration of these two markers of fibrosis in the plasma of boys with congenital unilateral cryptorchidism. MATERIALS AND METHODS The study group comprised 43 boys aged 1-3 years with congenital unilateral cryptorchidism. The control group included 54 healthy, age matched boys, admitted for planned hernioplasty. To assess laminin 5 and collagen IV in the plasma of boys with unilateral cryptorchidism, we used a new biosensor with Surface Plasmon Resonance Imaging technique detection. RESULTS The median concentration of laminin 5 and collagen IV in the serum of boys with congenital, unilateral cryptorchidism was higher than in boys with normal scrotal testis. The difference was statistically significant (p < 0.0001). We did not notice a correlation between a higher position of the testicles in the inguinal and/or their condition and levels of laminin 5 and collagen IV in the plasma. CONCLUSION Laminin 5 and collagen IV concentrations in the plasma were higher in patients with congenital unilateral cryptorchidism. We believe that in the future, our results could be compared with fertility level in adulthood.
Collapse
Affiliation(s)
- Marta Komarowska
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland
| | - Beata Szymańska
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Łukasz Ołdak
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Anna Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Wojciech Debek
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
12
|
Yin L, Siracusa JS, Measel E, Guan X, Edenfield C, Liang S, Yu X. High-Content Image-Based Single-Cell Phenotypic Analysis for the Testicular Toxicity Prediction Induced by Bisphenol A and Its Analogs Bisphenol S, Bisphenol AF, and Tetrabromobisphenol A in a Three-Dimensional Testicular Cell Co-culture Model. Toxicol Sci 2020; 173:313-335. [PMID: 31750923 PMCID: PMC6986343 DOI: 10.1093/toxsci/kfz233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging data indicate that structural analogs of bisphenol A (BPA) such as bisphenol S (BPS), tetrabromobisphenol A (TBBPA), and bisphenol AF (BPAF) have been introduced into the market as substitutes for BPA. Our previous study compared in vitro testicular toxicity using murine C18-4 spermatogonial cells and found that BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS. Recently, we developed a novel in vitro three-dimensional (3D) testicular cell co-culture model, enabling the classification of reproductive toxic substances. In this study, we applied the testicular cell co-culture model and employed a high-content image (HCA)-based single-cell analysis to further compare the testicular toxicities of BPA and its analogs. We also developed a machine learning (ML)-based HCA pipeline to examine the complex phenotypic changes associated with testicular toxicities. We found dose- and time-dependent changes in a wide spectrum of adverse endpoints, including nuclear morphology, DNA synthesis, DNA damage, and cytoskeletal structure in a single-cell-based analysis. The co-cultured testicular cells were more sensitive than the C18 spermatogonial cells in response to BPA and its analogs. Unlike conventional population-averaged assays, single-cell-based assays not only showed the levels of the averaged population, but also revealed changes in the sub-population. Machine learning-based phenotypic analysis revealed that treatment of BPA and its analogs resulted in the loss of spatial cytoskeletal structure, and an accumulation of M phase cells in a dose- and time-dependent manner. Furthermore, treatment of BPAF-induced multinucleated cells, which were associated with altered DNA damage response and impaired cellular F-actin filaments. Overall, we demonstrated a new and effective means to evaluate multiple toxic endpoints in the testicular co-culture model through the combination of ML and high-content image-based single-cell analysis. This approach provided an in-depth analysis of the multi-dimensional HCA data and provided an unbiased quantitative analysis of the phenotypes of interest.
Collapse
Affiliation(s)
- Lei Yin
- ReproTox Biotech LLC, Athens, Georgia 30602
| | - Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | | | - Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | - Shenxuan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| |
Collapse
|
13
|
Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod Toxicol 2019; 83:73-79. [DOI: 10.1016/j.reprotox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
14
|
Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod Toxicol 2018; 79:96-123. [PMID: 29925041 DOI: 10.1016/j.reprotox.2018.06.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments.
Collapse
Affiliation(s)
- Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Lei Yin
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States; ReproTox Biotech LLC, Athens 30602, GA, United States
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Shenuxan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
15
|
Ryu DY, Rahman MS, Pang MG. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio. Int J Mol Sci 2017; 18:ijms18091909. [PMID: 28878155 PMCID: PMC5618558 DOI: 10.3390/ijms18091909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| |
Collapse
|