1
|
Keating MF, Wolfe CA, Liebenberg K, Montgomery A, Porcari AM, Fleming ND, Makarov A, Eberlin LS. Data Acquisition and Intraoperative Tissue Analysis on a Mobile, Battery-Operated, Orbitrap Mass Spectrometer. Anal Chem 2024; 96:8234-8242. [PMID: 38739527 DOI: 10.1021/acs.analchem.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mass spectrometry has been increasingly explored in intraoperative studies as a potential technology to help guide surgical decision making. Yet, intraoperative experiments using high-performance mass spectrometry instrumentation present a unique set of operational challenges. For example, standard operating rooms are often not equipped with the electrical requirements to power a commercial mass spectrometer and are not designed to accommodate their permanent installation. These obstacles can impact progress and patient enrollment in intraoperative clinical studies because implementation of MS instrumentation becomes limited to specific operating rooms that have the required electrical connections and space. To expand our intraoperative clinical studies using the MasSpec Pen technology, we explored the feasibility of transporting and acquiring data on Orbitrap mass spectrometers operating on battery power in hospital buildings. We evaluated the effect of instrument movement including acceleration and rotational speeds on signal stability and mass accuracy by acquiring data using direct infusion electrospray ionization. Data were acquired while rolling the systems in/out of operating rooms and while descending/ascending a freight elevator. Despite these movements and operating the instrument on battery power, the relative standard deviation of the total ion current was <5% and the magnitude of the mass error relative to the internal calibrant never exceeded 5.06 ppm. We further evaluated the feasibility of performing intraoperative MasSpec Pen analysis while operating the Orbitrap mass spectrometer on battery power during an ovarian cancer surgery. We observed that the rich and tissue-specific molecular profile commonly detected from ovarian tissues was conserved when running on battery power. Together, these results demonstrate that Orbitrap mass spectrometers can be operated and acquire data on battery power while in motion and in rotation without losses in signal stability or mass accuracy. Furthermore, Orbitrap mass spectrometers can be used in conjunction to the MasSpec Pen while on battery power for intraoperative tissue analysis.
Collapse
Affiliation(s)
- Michael F Keating
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Charles A Wolfe
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Keziah Liebenberg
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ashley Montgomery
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Andreia M Porcari
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, Universidade São Francisco, Bragança Paulista, SP 12916-900, Brazil
| | - Nicole D Fleming
- Department of Surgery, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Wang Y, Xia B, Deng S, Ye Y, Zhou Y. Performing 2D-1D-2D Mass Spectrometry Imaging Using Strings. Anal Chem 2022; 94:1661-1668. [PMID: 35029371 DOI: 10.1021/acs.analchem.1c04181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mass spectrometry imaging (MSI) technique is widely used in several fields due to its ability to provide spatial information of samples. However, for existing MSI methods, the sample is typically placed on a two-dimensional (2D) platform and is scanned back and forth. As a result, the platform size limits the imaging size. This paper proposes a new MSI method that involves the initial imprinting of chemicals on a two-dimensional string plane area. The string plane was then unraveled to a one-dimensional (1D) string, and the chemicals imprinted on it were ionized using a lab-made ion source. Finally, a 2D MSI image was reconstructed through data processing (2D-1D-2D mass imaging). Compared with traditional MSI methods, the imaging size is no longer limited by the platform size, making it possible to perform the MSI of large samples. As proof of concept, this method was used to image an intact seedling of Broussonetia papyrifera. As a result, clear and overall MS images were obtained, demonstrating the ability of this method to analyze large samples.
Collapse
Affiliation(s)
- Yu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Shunyan Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Ye
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Zhang J, Sans M, Garza KY, Eberlin LS. MASS SPECTROMETRY TECHNOLOGIES TO ADVANCE CARE FOR CANCER PATIENTS IN CLINICAL AND INTRAOPERATIVE USE. MASS SPECTROMETRY REVIEWS 2021; 40:692-720. [PMID: 33094861 DOI: 10.1002/mas.21664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Developments in mass spectrometry technologies have driven a widespread interest and expanded their use in cancer-related research and clinical applications. In this review, we highlight the developments in mass spectrometry methods and instrumentation applied to direct tissue analysis that have been tailored at enhancing performance in clinical research as well as facilitating translation and implementation of mass spectrometry in clinical settings, with a focus on cancer-related studies. Notable studies demonstrating the capabilities of direct mass spectrometry analysis in biomarker discovery, cancer diagnosis and prognosis, tissue analysis during oncologic surgeries, and other clinically relevant problems that have the potential to substantially advance cancer patient care are discussed. Key challenges that need to be addressed before routine clinical implementation including regulatory efforts are also discussed. Overall, the studies highlighted in this review demonstrate the transformative potential of mass spectrometry technologies to advance clinical research and care for cancer patients. © 2020 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Marta Sans
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Kyana Y Garza
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Livia S Eberlin
- Department of Chemistry, University of Texas at Austin, Austin, TX
| |
Collapse
|
4
|
Otsuka Y. Direct Liquid Extraction and Ionization Techniques for Understanding Multimolecular Environments in Biological Systems (Secondary Publication). Mass Spectrom (Tokyo) 2021; 10:A0095. [PMID: 34249586 PMCID: PMC8246329 DOI: 10.5702/massspectrometry.a0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
A combination of direct liquid extraction using a small volume of solvent and electrospray ionization allows the rapid measurement of complex chemical components in biological samples and visualization of their distribution in tissue sections. This review describes the development of such techniques and their application to biological research since the first reports in the early 2000s. An overview of electrospray ionization, ion suppression in samples, and the acceleration of specific chemical reactions in charged droplets is also presented. Potential future applications for visualizing multimolecular environments in biological systems are discussed.
Collapse
Affiliation(s)
- Yoichi Otsuka
- Graduate School of Science, Osaka University, 1–1 Machikaneyama-cho, Toyonaka, Osaka 560–0043, Japan
- JST, PRESTO, 4–1–8 Honcho, Kawaguchi, Saitama 332–0012, Japan
| |
Collapse
|
5
|
Chen LC, Iwano T, Ninomiya S, Koike T, Tanaka Y, Yoshimura K. Miniaturized String Sampling Probe and Electrospray Extraction/Ionization within the Ion Inlet Tube for Mass Spectrometric Endoscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:606-610. [PMID: 33331152 DOI: 10.1021/jasms.0c00366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A moving string sampling probe and a new ESI based ionization source that can be readily incorporated into the existing endoscopes are developed for performing in vivo mass spectrometry during the endoscopic procedure. The medical-grade silk suture driven by a stepping motor is used to perform the sampling on the region of interest when the probe head is brought gently into contact with the surface of the gastrointestinal tissue. The tissues and the compounds adhered to the sampling string are transported to an ionization region inside the ion inlet tube in which they are extracted and ionized by the charging droplets generated from an electrospray outside the ion inlet. Since the extraction/ionization and sampling processes are isolated, organic solvents, high voltage (HV), and heating can be used for the optimization of ionization without compromising the biocompatibility of the sampling probe. The demonstration of the in vivo analysis of the gastric mucosa of a mouse is performed using a 2 m long gastrointestinal endoscope.
Collapse
Affiliation(s)
- Lee Chuin Chen
- Faculty of Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Satoshi Ninomiya
- Faculty of Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takayuki Koike
- ARS Corp., 3201-1, Ubaguchi, Kofu, Yamanashi 400-1504, Japan
| | | | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
6
|
Abstract
Biological surfaces such as skin and ocular surface provide a plethora of information about the underlying biological activity of living organisms. However, they pose unique problems arising from their innate complexity, constant exposure of the surface to the surrounding elements, and the general requirement of any sampling method to be as minimally invasive as possible. Therefore, it is challenging but also rewarding to develop novel analytical tools that are suitable for in vivo and in situ sampling from biological surfaces. In this context, wearable extraction devices including passive samplers, extractive patches, and different microextraction technologies come forward as versatile, low-invasive, fast, and reliable sampling and sample preparation tools that are applicable for in vivo and in situ sampling. This review aims to address recent developments in non-invasive in vivo and in situ sampling methods from biological surfaces that introduce new ways and improve upon existing ones. Directions for the development of future technology and potential areas of applications such as clinical, bioanalytical, and doping analyses will also be discussed. These advancements include various types of passive samplers, hydrogels, and polydimethylsiloxane (PDMS) patches/microarrays, and other wearable extraction devices used mainly in skin sampling, among other novel techniques developed for ocular surface and oral tissue/fluid sampling.
Collapse
|
7
|
Yoshimura K, Yamada Y, Ninomiya S, Chung WY, Chang YT, Dennison AR, Hiraoka K, Takeda S, Chen LC. Real-time analysis of living animals and rapid screening of human fluid samples using remote sampling electrospray ionization mass spectrometry. J Pharm Biomed Anal 2019; 172:372-378. [PMID: 31096096 DOI: 10.1016/j.jpba.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/18/2019] [Accepted: 04/28/2019] [Indexed: 12/16/2022]
Abstract
Real-time and in-situ mass-spectrometry analyses of living animal and biological sample were performed using a novel remote sampling electrospray ionization (RS-ESI) probe. Unlike conventional ESI, in which injection or syringe loading is required for sample introduction, the RS-ESI probe ionizes the samples when the sampling capillary is in contact with the sample. As the sampling capillary is electrically held at ground potential, the safety of the animal and operator is assured. The liquid sample is aspirated to the ESI emitter at the other end of the capillary by the Venturi effect. Subsequently, the electrospray is generated when a high voltage is applied to the counter electrode placed inside the ion source chamber. The probe unit is attached to the mass spectrometer with a long flexible tube and its position can be freely manipulated during the analysis. In this report, we demonstrate a real-time analysis of a living mouse liver and an automatic analysis of 138 serum samples using this new technique.
Collapse
Affiliation(s)
- Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Yuki Yamada
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi, 400-8511 Japan
| | - Satoshi Ninomiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi, 400-8511 Japan
| | - Wen Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, LE5 4PW, UK
| | - Yu-Ting Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung Shan South Road, Taipei, Taiwan
| | - Ashley Robert Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, LE5 4PW, UK
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi, 400-8511 Japan.
| |
Collapse
|
8
|
ZHANG XL, ZHANG H, WANG XC, HUANG KK, WANG D, CHEN HW. Advances in Ambient Ionization for Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tang F, Guo C, Ma X, Zhang J, Su Y, Tian R, Shi R, Xia Y, Wang X, Ouyang Z. Rapid In Situ Profiling of Lipid C═C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions. Anal Chem 2018; 90:5612-5619. [PMID: 29624380 DOI: 10.1021/acs.analchem.7b04675] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and in situ profiling of lipids using ambient mass spectrometry (AMS) techniques has great potential for clinical diagnosis, biological studies, and biomarker discovery. In this study, the online photochemical reaction involving carbon-carbon double bonds was coupled with a surface sampling technique to develop a direct tissue-analysis method with specificity to lipid C═C isomers. This method enabled the in situ analysis of lipids from the surface of various tissues or tissue sections, which allowed the structural characterization of lipid isomers within 2 min. Under optimized reaction conditions, we have established a method for the relative quantitation of lipid C═C location isomers by comparing the abundances of the diagnostic ions arising from each isomer, which has been proven effective through the established linear relationship ( R2 = 0.999) between molar ratio and diagnostic ion ratio of the FA 18:1 C═C location isomers. This method was then used for the rapid profiling of unsaturated lipid C═C isomers in the sections of rat brain, lung, liver, spleen, and kidney, as well as in normal and diseased rat tissues. Quantitative information on FA 18:1 and PC 16:0-18:1 C═C isomers was obtained, and significant differences were observed between different samples. To the best of our knowledge, this is the first study to report the direct analysis of lipid C═C isomers in tissues using AMS. Our results demonstrated that this method can serve as a rapid analytical approach for the profiling of unsaturated lipid C═C isomers in biological tissues and should contribute to functional lipidomics and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Chengan Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Jian Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Yuan Su
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Ran Tian
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Riyi Shi
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yu Xia
- Department of Chemistry , Tsinghua University , Beijing 100084 , China.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Xiaohao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
10
|
Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, Boutelle MG. Chemical Monitoring in Clinical Settings: Recent Developments toward Real-Time Chemical Monitoring of Patients. Anal Chem 2017; 90:2-18. [PMID: 29083872 DOI: 10.1021/acs.analchem.7b04224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marsilea A Booth
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Sally A N Gowers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Chi Leng Leong
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Michelle L Rogers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Isabelle C Samper
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Aidan P Wickham
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Chen LC, Yoshimura K, Ninomiya S, Takeda S, Hiraoka K. Towards Practical Endoscopic Mass Spectrometry. ACTA ACUST UNITED AC 2017; 6:S0070. [PMID: 28852605 DOI: 10.5702/massspectrometry.s0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
In this paper, we briefly review the remote mass spectrometric techniques that are viable to perform "endoscopic mass spectrometry," i.e., in-situ and in-vivo MS analysis inside the cavity of human or animal body. We also report our experience with a moving string sampling probe for the remote sample collection and the transportation of adhered sample to an ion source near the mass spectrometer. With a miniaturization of the probe, the method described here has the potential to be fit directly into a medical endoscope.
Collapse
Affiliation(s)
- Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Satoshi Ninomiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi
| |
Collapse
|