1
|
Sodia TZ, Tetu HL, Saccomano SC, Letch EG, Branning JM, Mendonsa AA, Vyas S, Cash KJ. Persistent Luminescence Nanosensors: A Generalized Optode-Based Platform for Autofluorescence-Free Sensing in Biological Systems. ACS Sens 2024; 9:3307-3315. [PMID: 38826054 DOI: 10.1021/acssensors.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fluorescent nanosensors have revolutionized diagnostics and our ability to monitor cellular dynamics. Yet, distinguishing sensor signals from autofluorescence remains a challenge. Here, we merged optode-based sensing with near-infrared-emitting ZnGa2O4:Cr3+ persistent luminescence nanoparticles (PLNPs) to create nanocomposites for autofluorescence-free "glow-in-the-dark" sensing. Hydrophobic modification and incorporation of the persistent luminescence nanoparticles into an optode-based nanoparticle core yielded persistent luminescence nanosensors (PLNs) for five analytes (K+, Na+, Ca2+, pH, and O2) via two distinct mechanisms. We demonstrated the viability of the PLNs by quantifying K+ in fetal bovine serum, calibrating the pH PLNs in the same, and ratiometrically monitoring O2 metabolism in cultures of Saccharomyces cerevisiae, all the while overcoming their respective autofluorescence signatures. This highly modular platform allows for facile tuning of the sensing functionality, optical properties, and surface chemistry and promises high signal-to-noise ratios in complex optical environments.
Collapse
Affiliation(s)
- Tyler Z Sodia
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hanna L Tetu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Samuel C Saccomano
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Elizabeth G Letch
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - John M Branning
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- The MITRE Corporation, Bedford, Massachusetts 01730, United States
| | - Adrian A Mendonsa
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J Cash
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Folz J, Wasserman JH, Jo J, Wang X, Kopelman R. Photoacoustic Chemical Imaging Sodium Nano-Sensor Utilizing a Solvatochromic Dye Transducer for In Vivo Application. BIOSENSORS 2023; 13:923. [PMID: 37887116 PMCID: PMC10605089 DOI: 10.3390/bios13100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 μM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Janggun Jo
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Dey S, Guha Ray P, Roy T, Santra S, Dhara S, Ray SK, Guha PK. Nanoinspired Biocompatible Chemosensors: Progress toward Efficient Prognosis of Arsenic Poisoning. ACS APPLIED BIO MATERIALS 2022; 5:3850-3858. [PMID: 35926152 DOI: 10.1021/acsabm.2c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diagnosing heavy metals poisoning in human beings is of paramount importance. In this work, we present the design of a biocompatible FexNi(1-x)O hierarchical nanostructure-based sensor for ultraselective detection of arsenate (As(V)) ions in biological environments (e.g., body fluids, blood plasma, etc.). A novel iron doping technique was employed to fabricate the nanostructures rich with Fe cores to induce ultraselectivity toward arsenates. These nanostructures were used as dispersed markers and thin films deposited on Si/SiO2 substrates to support in vivo and in vitro detection of As(V) ions. The device demonstrated excellent sensitivity with a maximum response of 64.7% (for 1000 ppm As(V) ions) with a limit of detection of 1 ppb in blood plasma. The sensor's response time (τr) was 5 s with 95.48% recovery with a maximum error of ±0.549% after three washes. The device showed excellent response stability for 63 days with a maximum error of ±1.27%. The sensor devices were highly reproducible, with a maximum variation of ±0.6% in response for a batch of four devices. Due to Fe doping, the nanostructures in suspension demonstrated as arsenate markers with excellent cytocompatibility (with dosage up to 1 mg/mL) for human umbilical vein endothelial cells and 3T3 fibroblasts (LDH < 120 and cell viability ∼80%) till 48 h of incubation. The sensing mechanism suggested that the nanostructures not only detect arsenates but also prevent their substantial reduction to arsenites under anoxic environments. Thus, the sensors may show considerable progress toward early arsenate detection in living systems.
Collapse
Affiliation(s)
- Sayan Dey
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, New York 10027, United States
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sumita Santra
- Department of Physics, Belda College, Belda, West Bengal 721424, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Samit Kumar Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prasanta Kumar Guha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Wang L, Wang B, Liu E, Zhao Y, He B, Wang C, Xing G, Tang Z, Zhou Y, Qu S. Polyetherimide functionalized carbon dots with enhanced red emission in aqueous solution for bioimaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Sodia T, David AA, Chesney AP, Perri JN, Gutierrez GE, Nepple CM, Isbell SM, Cash KJ. Nanoparticle-Based Liquid-Liquid Extraction for the Determination of Metal Ions. ACS Sens 2021; 6:4408-4416. [PMID: 34793121 PMCID: PMC8715536 DOI: 10.1021/acssensors.1c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022]
Abstract
Traditional liquid phase extraction techniques that use optically responsive ligands provide benefits that enable cost-efficient and rapid measurements. However, these approaches have limitations in their excessive use of organic solvents and multistep procedures. Here, we developed a simple, nanoscale extraction approach by replacing the macroscopic organic phase with hydrophobic polymeric nanoparticles that are dispersed in an aqueous feed. The concentration of analytes in polymeric nanoparticle suspensions is governed by similar partition principles to liquid-liquid phase extraction techniques. By encasing optically responsive metal ligands inside polymeric nanoparticles, we introduce a one-step metal quantification assay based on traditional two-phase extraction methodologies. As an initial proof of concept, we encapsulated bathophenanthroline (BP) inside the particles to extract then quantify Fe2+ with colorimetry in a dissolved supplement tablet and creek water. These Fe2+ nanosensors are sensitive and selective and report out with fluorescence by adding a fluorophore (DiO) into the particle core. To show that this new rapid extraction assay is not exclusive to measuring Fe2+, we replaced BP with either 8-hydroxyquinoline or bathocuproine to measure Al3+ or Cu+, respectively, in water samples. Utilizing this nanoscale extraction approach will allow users to rapidly quantify metals of interest without the drawbacks of larger-scale phase extraction approaches while also allowing for the expansion of phase extraction methodologies into areas of biological research.
Collapse
Affiliation(s)
- Tyler
Z. Sodia
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Alexa A. David
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Ashley P. Chesney
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Juliana N. Perri
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | | | - Cecilia M. Nepple
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Sydney M. Isbell
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Kevin J. Cash
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
7
|
|
8
|
Batool M, Junaid HM, Tabassum S, Kanwal F, Abid K, Fatima Z, Shah AT. Metal Ion Detection by Carbon Dots-A Review. Crit Rev Anal Chem 2020; 52:756-767. [PMID: 32985228 DOI: 10.1080/10408347.2020.1824117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of economical, sensitive, selective and robust sensors for metal ion sensing is always fascinating for a chemist because traditional routs for their detection involve complicated instrumentation and critical sample preparation procedures. A large number of metal ion detectors including carbon dots (CDs) have been reported for sensitive and selective detection of metal ions. This review comprehensively explores the use of CDs as metallic cation sensors. CDs are being fabricated from variety of carbon sources by employing various synthetic channels. CDs are proved to be efficient colorimetric and fluorimetric detectors due to surface oxygen moieties which are responsible to co-ordinate with metal ions. Doping of CDs with hetero atom such as N, S, B etc. may further enhance their activity toward metal detection. Therefore, designing of CDs having selective sensing properties with low detection limits has gained significant interest.HighlightsCDs have gained much attention as chemical sensors due to their dynamic features i.e. less toxicity, stability, solubility in various solvents, absorption in UV/Vis. region, fluorescence and tunable physico-chemical properties.These are coast effective, sensitive and selective colorimetric and fluorimetric metal ion sensors.Detection of metal ions by CDs involves different mechanisms such as complexation, aggregation, electron transfer, inner filter effect etc.LOD data is an evidence of their greater efficiency.
Collapse
Affiliation(s)
- Madeeha Batool
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | | | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Farah Kanwal
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Kamran Abid
- Department of Electrical Engineering, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zara Fatima
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
9
|
Dailey AL, Greer MD, Sodia TZ, Jewell MP, Kalin TA, Cash KJ. LipiSensors: Exploiting Lipid Nanoemulsions to Fabricate Ionophore-Based Nanosensors. BIOSENSORS-BASEL 2020; 10:bios10090120. [PMID: 32927619 PMCID: PMC7557773 DOI: 10.3390/bios10090120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Ionophore-based nanosensors (IBNS) are tools that enable quantification of analytes in complex chemical and biological systems. IBNS methodology is adopted from that of bulk optodes where an ion exchange event is converted to a change in optical output. While valuable, an important aspect for application is the ability to intentionally tune their size with simple approaches, and ensure that they contain compounds safe for application. Lipidots are a platform of size tunable lipid nanoemulsions with a hydrophobic lipid core typically used for imaging and drug delivery. Here, we present LipiSensors as size tunable IBNS by exploiting the Lipidot model as a hydrophobic structural support for the sensing moieties that are traditionally encased in plasticized PVC nanoparticles. The LipiSensors we demonstrate here are sensitive and selective for calcium, reversible, and have a lifetime of approximately one week. By changing the calcium sensing components inside the hydrophobic core of the LipiSensors to those sensitive for oxygen, they are also able to be used as ratiometric O2 sensitive nanosensors via a quenching-based mechanism. LipiSensors provide a versatile, general platform nanosensing with the ability to directly tune the size of the sensors while including biocompatible materials as the structural support by merging sensing approaches with the Lipidot platform.
Collapse
Affiliation(s)
- Alexandra L. Dailey
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Meredith D. Greer
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Tyler Z. Sodia
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO 80401, USA.;
| | - Megan P. Jewell
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Tabitha A. Kalin
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Kevin J. Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO 80401, USA.;
- Correspondence: ; Tel.: +1-303-273-3631
| |
Collapse
|
10
|
Zhao D, Zhang Z, Li C, Xiao X, Li J, Liu X, Cheng H. Yellow-Emitting Hydrophobic Carbon Dots via Solid-Phase Synthesis and Their Applications. ACS OMEGA 2020; 5:22587-22595. [PMID: 32923818 PMCID: PMC7482243 DOI: 10.1021/acsomega.0c03239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 05/04/2023]
Abstract
The preparation and application of hydrophobic carbon dots (HCDs) are now the hotspots in the field of nanomaterials. This paper reports the fast synthesis of long-wavelength-emitting HCDs (yellow-emitting, λem = 541 nm) through a solid-phase route, with l-cysteine hydrochloride anhydrous and citric acid as carbon sources and dicyclohexylcarbodiimide as a dehydrating agent, reacting at 180 °C for 40 min, with a quantum yield of 30%. The solid-phase route avoids the usage of organic reagents during the synthesis process and is thus environmentally friendly. The obtained HCDs can be simply separated into HCDs-L (less density) and HCDs-W (higher density) with differences in physical (polarity, density), optical, and chemical properties. The differences in HCDs-L, HCDs-W, and water-soluble CDs (WCDs) were compared through various characterization methods, and the synthesis and luminescence mechanisms of HCDs were investigated. Meanwhile, HCDs were employed in the fields of LED lamp production and solid fluorescent shaping material. The prepared HCDs were then modified into WCDs through the liposomal embedding method. The HCDs prepared by the new solid-phase route exhibit stable and highly efficient photoluminescence ability and will have a promising outlook in their applications in various fields.
Collapse
|
11
|
Sun X, Zhang J, Wang X, Zhao J, Pan W, Yu G, Qu Y, Wang J. Colorimetric and fluorimetric dual mode detection of Fe2+ in aqueous solution based on a carbon dots/phenanthroline system. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Jewell MP, Greer MD, Dailey AL, Cash KJ. Triplet-Triplet Annihilation Upconversion Based Nanosensors for Fluorescence Detection of Potassium. ACS Sens 2020; 5:474-480. [PMID: 31912733 DOI: 10.1021/acssensors.9b02252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Typical ionophore-based nanosensors use Nile blue derived indicators called chromoionophores, which must contend with strong background absorption, autofluorescence, and scattering in biological samples that limit their usefulness. Here, we demonstrate potassium-selective nanosensors that utilize triplet-triplet annihilation upconversion to minimize potential optical interference in biological media and a pH-sensitive quencher molecule to modulate the upconversion intensity in response to changes in analyte concentration. A triplet-triplet annihilation dye pair (platinum(II) octaethylporphyrin and 9,10-diphenylanthracene) was integrated into nanosensors containing an analyte binding ligand (ionophore), charge-balancing additive, and a pH indicator quencher. The nanosensor response to potassium was shown to be reversible and stable for 3 days. In addition, the nanosensors are selective against sodium, calcium, and magnesium (selectivity coefficients in log10 units of -2.2 for calcium, -2.0 for sodium, and -2.4 for magnesium), three interfering ions found in biological samples. The lack of signal overlap between the upconversion nanosensors and GFP, a common biological fluorescent indicator, is demonstrated in confocal microscope images of sensors embedded in a bacterial biofilm.
Collapse
Affiliation(s)
- Megan P. Jewell
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Meredith D. Greer
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexandra L. Dailey
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J. Cash
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
13
|
Luminescent Nanosensors for Ratiometric Monitoring of Three-Dimensional Oxygen Gradients in Laboratory and Clinical Pseudomonas aeruginosa Biofilms. Appl Environ Microbiol 2019; 85:AEM.01116-19. [PMID: 31420335 DOI: 10.1128/aem.01116-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023] Open
Abstract
Bacterial biofilms can form persistent infections on wounds and implanted medical devices and are associated with many chronic diseases, such as cystic fibrosis. These infections are medically difficult to treat, as biofilms are more resistant to antibiotic attack than their planktonic counterparts. An understanding of the spatial and temporal variation in the metabolism of biofilms is a critical component toward improved biofilm treatments. To this end, we developed oxygen-sensitive luminescent nanosensors to measure three-dimensional (3D) oxygen gradients, an application of which is demonstrated here with Pseudomonas aeruginosa biofilms. The method was applied here and improves on traditional one-dimensional (1D) methods of measuring oxygen profiles by investigating the spatial and temporal variation of oxygen concentration when biofilms are challenged with antibiotic attack. We observed an increased oxygenation of biofilms that was consistent with cell death from comparisons with antibiotic kill curves for PAO1. Due to the spatial and temporal nature of our approach, we also identified spatial and temporal inhomogeneities in the biofilm metabolism that are consistent with previous observations. Clinical strains of P. aeruginosa subjected to similar interrogation showed variations in resistance to colistin and tobramycin, which are two antibiotics commonly used to treat P. aeruginosa infections in cystic fibrosis patients.IMPORTANCE Biofilm infections are more difficult to treat than planktonic infections for a variety of reasons, such as decreased antibiotic penetration. Their complex structure makes biofilms challenging to study without disruption. To address this limitation, we developed and demonstrated oxygen-sensitive luminescent nanosensors that can be incorporated into biofilms for studying oxygen penetration, distribution, and antibiotic efficacy-demonstrated here with our sensors monitoring antibiotic impacts on metabolism in biofilms formed from clinical isolates. The significance of our research is in demonstrating not only a nondisruptive method for imaging and measuring oxygen in biofilms but also that this nanoparticle-based sensing platform can be modified to measure many different ions and small molecule analytes.
Collapse
|
14
|
Rong G, Tuttle EE, Neal Reilly A, Clark HA. Recent Developments in Nanosensors for Imaging Applications in Biological Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:109-128. [PMID: 30857408 PMCID: PMC6958676 DOI: 10.1146/annurev-anchem-061417-125747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.
Collapse
Affiliation(s)
- Guoxin Rong
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Erin E Tuttle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ashlyn Neal Reilly
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Ferris MS, Behr MR, Cash KJ. An ionophore-based persistent luminescent ‘Glow Sensor’ for sodium detection. RSC Adv 2019; 9:32821-32825. [PMID: 35529711 PMCID: PMC9073184 DOI: 10.1039/c9ra05313a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/06/2019] [Indexed: 01/23/2023] Open
Abstract
Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or ‘persistent luminescence’ particles, for in vitro and in vivo sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based ‘glow-in-the-dark’ microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent ‘Glow Sensor’. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability. A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.![]()
Collapse
Affiliation(s)
- Mark S. Ferris
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Madeline R. Behr
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Kevin J. Cash
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
- Quantitative Biosciences and Engineering
| |
Collapse
|
16
|
Rong G, Kim EH, Qiang Y, Di W, Zhong Y, Zhao X, Fang H, Clark HA. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes. ACS Sens 2018; 3:2499-2505. [PMID: 30358986 DOI: 10.1021/acssensors.8b00903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodium flux plays a pivotal role in neurobiological processes including initiation of action potentials and regulation of neuronal cell excitability. However, unlike the wide range of fluorescent calcium indicators used extensively for cellular studies, the choice of sodium probes remains limited. We have previously demonstrated optode-based nanosensors (OBNs) for detecting sodium ions with advantageous modular properties such as tunable physiological sensing range, full reversibility, and superb selectivity against key physiological interfering ion potassium. (1) Motivated by bridging the gap between the great interest in sodium imaging of neuronal cell activity as an alternative to patch clamp and limited choices of optical sodium indicators, in this Letter we report the application of nanosensors capable of detecting intracellular sodium flux in isolated rat dorsal root ganglion neurons during electrical stimulation using transparent microelectrodes. Taking advantage of the ratiometric detection scheme offered by this fluorescent modular sensing platform, we performed dual color imaging of the sensor to monitor the intracellular sodium currents underlying trains of action potentials in real time. The combination of nanosensors and microelectrodes for monitoring neuronal sodium dynamics is a novel tool for investigating the regulatory role of sodium ions involved during neural activities.
Collapse
|