1
|
Baghban HN, Hasanzadeh M. Multifunctional one-droplet microfluidic chemosensing of ractopamine in real samples: a user-oriented flexible nano-architecture for on-site food and pharmaceutical analysis using optical sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4506-4517. [PMID: 37615053 DOI: 10.1039/d3ay01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Illegal use of ractopamine (RAC) in the food industry has dire consequences for health which should be curbed by inexpensive on-site checks. In this study, four advanced nanostructures of AuNPs were examined for this purpose. For the first time, a novel cost-effective colorimetric opto-sensor based on gold nanoparticles in aqueous solution was developed and successfully utilized for the recognition of RAC in real samples. The colorimetric chemosensor based on AuNPs-CysA exhibited a linear range of 0.1 μM to 0.01 M with a limit of detection (LOD) of 0.001 μM. Also, using AuNPs-DDT as a photonic probe two ranges of linearity of 0.01 to 50 μM and 0.005 to 0.01 M were obtained (LOD = 1 nM). The outstanding features of the utilized nanostructures are the simple preparation, the suitable stability of AuNPs-CysA and the excellent selectivity of AuNPs-DDT toward RAC recognition. Finally, the engineered colorimetric systems were combined with a simple and inexpensive optimized microfluidic glass fiber-based device. This work paves the way for devising inexpensive and efficient on-site recognition devices for food safety checks.
Collapse
Affiliation(s)
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Liu X, Sun B. One-Pot Synthesis of Nitrogen-Doped Graphene Quantum Dots and Their Applications in Bioimaging and Detecting Copper Ions in Living Cells. ACS OMEGA 2023; 8:27333-27343. [PMID: 37546585 PMCID: PMC10399175 DOI: 10.1021/acsomega.3c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Two natural carbon sources, glutamic acid and tyrosine, were used to fabricate strong green emission nitrogen-doped graphene quantum dots (N-GQDs) with the one-pot pyrolysis method. The morphology of the prepared GQDs has been characterized by high-resolution transmission electron microscopy, showing a well-displayed crystalline structure with a lattice spacing of 0.262 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to analyze the surface functional groups and elemental composition, suggesting that the N-GQDs have active carboxylic and amino functional groups. Meanwhile, photoluminescence and ultraviolet-visible (UV-vis) spectroscopy were used to evaluate the optical properties of GQDs; the prepared N-GQDs show an excitation-dependent fluorescence behavior with a maximum excitation/emission wavelength at 460/522 nm, respectively. N-GQDs showed good photostability and the fluorescence intensity quenched about 10% after irradiating 2800 s in the experiment of time kinetic analysis. The MTT assay was utilized to assess the viability of N-GQDs; good biocompatibility with a relatively high quantum yield of 12% demonstrated the potential for serving as bioimaging agents. Besides, the selectivity study on metal ions indicates that the N-GQDs could be used in Cu2+ detection. The linear range is from 0.1 to 10 μM with a limit of detection of 0.06 μM. Overall, these proposed N-GQDs with one-pot synthesis showed their promising potential in cell imaging and Cu2+ monitoring applications involved in the biological environment.
Collapse
|
3
|
Fu Z, He J, Li Y, Ding H, Gao X, Cui F. A novel and ultrasensitive fluorescent probe derived from labeled carbon dots for recognitions of copper ions and glyphosate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122052. [PMID: 36356396 DOI: 10.1016/j.saa.2022.122052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Labeling materials with special functional groups are very valuable for the creation of novel probes. Hence, a novel fluorescent probe was constructed by conjugating 4-butyl-3-thiosemicarbazide (BTSC) with carbon dots (CDs). The CDs labeled by BTSC (BTSC-CDs) displayed a strong capability for recognition of Cu2+ and Cu2+ could quench the emission of BTSC-CDs significantly. The fluorescence quenching was proved to be a static quenching which was resulted from the interaction between BTSC-CDs and Cu2+ to form a ground-state BTSC-CDs/Cu2+complex, and the fluorescence intensities showed a good linear correlation with Cu2+ concentrations in the range of 0.20-30 μM. What is more important, by adding glyphosate into the sensor system of BTSC-CDs/Cu2+ the fluorescence of the probe turned on again owing to the stronger chelating between glyphosate and Cu2+ than between BTSC-CDs and Cu2+. This could realize the specific detection of glyphosate and the limit of detection was low to 0.27 μM. Detecting glyphosate using the complex BTSC-CDs/Cu2+ system in actual samples with satisfactory outcomes indicated that a novel fluorescent probe for Cu2+ and subsequent glyphosate detections has been provided.
Collapse
Affiliation(s)
- Zheng Fu
- College of Material Science and Engineering, Henan Institute of Technology, Henan, Xinxiang 453000, PR China
| | - Jiantong He
- Clinical Laboratory, Xinxiang Maternal and Child Health Hospital, Henan, Xinxiang 453003, PR China
| | - Yameng Li
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Hai Ding
- College of Material Science and Engineering, Henan Institute of Technology, Henan, Xinxiang 453000, PR China
| | - Xiaoxiao Gao
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Fengling Cui
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China.
| |
Collapse
|
4
|
Korkmaz N, Hwang C, Kessler KK, Silina YE, Müller L, Park J. A novel copper (II) binding peptide for a colorimetric biosensor system design. Talanta 2021; 232:122439. [PMID: 34074424 DOI: 10.1016/j.talanta.2021.122439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Filamentous bacteriophages are viruses infecting only bacteria. In this study, phage display technique was applied to identify highly selective Cu(II) binding peptides. After five rounds of positive screening against Cu(II) and various rounds of negative screenings against competitive metal ions (Al(III), Co(II), Fe(III), Ni(II) and Zn(II)), bacteriophages were enriched. Selective Cu(II) binding of final phages was confirmed by Enzyme Linked Immunosorbent Assay (ELISA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) analyses. 15 phage plaques were randomly selected and sequenced. Cu-5 peptide (HGFANVA) with the highest frequency of occurrence and the strongest Cu(II) affinity was chosen for further Cu(II) detection and removal tests. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirmed the strong Cu(II) binding potential of engineered viruses. Cu-5 peptides were synthetically synthesized with three Cysteine units at C-terminal and a AuNP-peptide biosensor system was developed based on aggregation behavior of AuNPs upon Cu(II) ion treatment. AuNP-based Cu(II) sensor was selective for Cu(II) and the LOD was 91.15 nM (ca. 5.8 × 10-3 mg/L; 3σ/k, n = 5, R2 = 0.992) for the case study which is considerably lower than the WHO's accepted guideline of 1.3 mg/L. This study provides an interdisciplinary approach to apply short peptides as recognition units for biosensor studies which are user friendly, not bulky and cost-effective.
Collapse
Affiliation(s)
- Nuriye Korkmaz
- Biosensor Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft MbH, Campus E 7.1, D-66123, Saarbrücken, Germany.
| | - Changhyun Hwang
- Biosensor Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft MbH, Campus E 7.1, D-66123, Saarbrücken, Germany; Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Kim Kristin Kessler
- Biosensor Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft MbH, Campus E 7.1, D-66123, Saarbrücken, Germany
| | - Yuliya E Silina
- Institute for Biochemistry, Zentrum für Human und Molekularbiologie (ZHMB), Campus B 2.2, University of Saarland, D-66123, Saarbrücken, Germany
| | - Lisann Müller
- Biosensor Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft MbH, Campus E 7.1, D-66123, Saarbrücken, Germany
| | - Jayoung Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft MbH, Campus E 7.1, D-66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols. BIOSENSORS-BASEL 2020; 10:bios10090113. [PMID: 32882936 PMCID: PMC7558680 DOI: 10.3390/bios10090113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
A colorimetric assay was developed for the detection of biothiols, based on the peroxidase-like activity of iodine-capped gold nanoparticles (AuNPs). These AuNPs show a synergetic effect in the form of peroxidase-mimicking activity at the interface of AuNPs, while free AuNPs and iodine alone have weak catalytic properties. Thus, iodine-capped AuNPs possess good intrinsic enzymatic activity and trigger the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), leading to a change in color from colorless to yellow. When added to solution, biothiols, such as cysteine, strongly bind to the interface of AuNPs via gold-thiol bonds, inhibiting the catalytic activity of AuNPs, resulting in a decrease in oxidized TMB. Using this strategy, cysteine could be linearly determined, at a wide range of concentrations (0.5 to 20 μM), with a detection limit of 0.5 μM using UV-Vis spectroscopy. This method was applied for the detection of cysteine in diluted human urine.
Collapse
|
7
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
8
|
Wu H, Li Y, He X, Chen L, Zhang Y. Colorimetric sensor based on 4-mercaptophenylboronic modified gold nanoparticles for rapid and selective detection of fluoride anion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:393-398. [PMID: 30802796 DOI: 10.1016/j.saa.2019.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/30/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A highly selective and sensitive colorimetric sensor based on aggregation-induced color change of 4-mercaptophenylboronic modified gold nanoparticles was designed for the determination of fluoride anion. The 4-mercaptophenylboronic modified gold nanoparticles were synthesized by a simple one-pot reaction. The aggregation process occurred when interaction between fluoride anion and 4-mercaptophenylboronic on the surface of gold nanoparticles took place; as a result, fluoroborate anions were formed coupled with changes in the electronic properties of the AuNPs. The change can be measured by UV-Vis absorption spectra. The sensor shows good selectivity and sensitivity for fluoride anion. The linear range is 10.0-30.0 μM for fluoride and the detection limit of fluoride is 3.45 × 10-7 M according to IUPAC criteria (3σ rule). Furthermore, the sensor has been used for the detection of fluoride anion in tap water, ground water and human serum samples, the recovery can achieve 94.0%-103.3%, 94.7%-101.0% and 89.8-100.9%, respectively. The excellent performance of colorimetric sensor in the detection of the fluoride anion demonstrated the potential application in the detecting fluoride anion present in the complex environmental and biological samples.
Collapse
Affiliation(s)
- Haocheng Wu
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yijun Li
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Xiwen He
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Yukui Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China.
| |
Collapse
|
9
|
Colorimetric copper ion sensing in solution phase and on paper substrate based on catalytic decomposition of S-nitrosothiol. Anal Chim Acta 2019; 1053:155-161. [DOI: 10.1016/j.aca.2018.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
|