1
|
Ranishenka B, Lamekina Y, Seviarynchyk T, Bugaenko D, Shmanai V, Karchava A. N-Aryl-DABCO Salts as an Unprecedented Sensing Platform for the Detection of Thiols and Selenols. Chemistry 2024; 30:e202400229. [PMID: 38369579 DOI: 10.1002/chem.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
Quaternary N-aryl-DABCO salts were introduced for the first time as a highly selective sensing platform for thiols and selenols. By employing this platform, a highly sensitive coumarin based "off-on" fluorescent probe was designed and synthesized. The probe possesses a good solubility in water, low background fluorescence, and, most importantly, demonstrates high selectivity to aryl thiols and selenols over their aliphatic counterparts and other common nucleophiles. A dramatic increase in fluorescence intensity is achieved through the selective cleavage of the quaternized DABCO-ring, yielding a piperazine derivatives with a high fluorescence quantum yield (~72 %). Moreover, stability of the probe to the most used reducing agents DTT and TCEP was demonstrated. The limits of detection for p-thiocresol and phenyl selenide were evaluated to be 22 nM and 6 nM, respectively.
Collapse
Affiliation(s)
- Bahdan Ranishenka
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Yuliya Lamekina
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Tatsiana Seviarynchyk
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Dmitry Bugaenko
- Department of Chemistry., Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Alexander Karchava
- Department of Chemistry., Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
2
|
Taskiran N, Erdemir S, Oguz M, Malkondu S. Two red/blue-emitting fluorescent probes for quick, portable, and selective detection of thiophenol in food, soil and plant samples, and their applications in bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133464. [PMID: 38237433 DOI: 10.1016/j.jhazmat.2024.133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Thiophenol (PhSH), which is widely used in many industries, poses significant health risks owing to its acute toxicity and irritating effects. Thus, the detection of PhSH is crucial for ensuring environmental and food safety. There is significant room for improvement in the sensing properties of the reported analytical methods, such as response time, detection limit, selectivity, and portable detection. Herein, we present two new red/blue fluorescence-emissive sensors (NS1 and NS2) for PhSH detection. After reacting with PhSH, NS1 exhibited a low detection limit (66.7 nM), red emission, fast response time of just 10 s, and large Stokes shift (240 nm). NS2 could detect PhSH with a low detection limit (75.8 nM), fast response time of 20 s, and blue emission. The noticeable color response and portability of the two probes made them suitable for on-site detection of PhSH in various samples, such as water, soil, plant, food samples, and living cells. Moreover, it has been shown that these probes could be used to determine PhSH content in smartphone applications, thin layer chromatography kits, and polysulfone capsule kits. Prepared probes have low cytotoxicity and show good permeability in tested living cells, which is important for early diagnosis, disease research, and emergency analysis. Compared with other studies, the proposed approach has remarkable advantages in terms of detection limit, portability, response time, and low cytotoxicity. Thus, it meets the crucial demand for ensuring health, environmental and food safety, and adherence to regulatory standards.
Collapse
Affiliation(s)
- Nazli Taskiran
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
3
|
Lin P, Xie C, Liu T, Yuan X, Luo K, Yang Q, Tan L, Lin Q, Zhou L. Rational construction of reliable fluorescent probes for rapid detection and imaging evaluation of hazardous thiophenol in real-food and biosystems. Food Chem 2024; 432:137264. [PMID: 37643519 DOI: 10.1016/j.foodchem.2023.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Thiophenol (PhSH), a highly reactive aromatic thiol, plays an essential role as a common industrial raw material in food, pesticides, pharmaceuticals, and cosmetics. In this work, we designed and constructed two fluorescent probes CM-PhSH and CM-Ratio-PhSH by a rational strategy. Specifically, coumarin fluorophores with excellent optical properties were modified, and olefinic unsaturated bonds served as reaction sites for the detection of PhSH. Based on this, the introduction of the nitro group at specific positions of the CM-PhSH changed the fluorescence emission of the CM-Ratio-PhSH, eventually obtaining a novel ratiometric fluorescent probe CM-Ratio-PhSH for PhSH detection. Surprisingly, these two probes exhibited advantages such as high specificity and low limit of detection (LOD) for CM-PhSH 32.3 nM and CM-Ratio-PhSH 40.2 nM, respectively. Furthermore, subsequent experiments demonstrated CM-PhSH and CM-Ratio-PhSH could be successfully used for highly selective and rapid detection of PhSH in aqueous solutions, live cells, and complex food samples.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
4
|
Peng HY, Zhang G, Sun R, Xu YJ, Ge JF. ESIPT-based fluorescent enhanced probes prompted by methylated β-cyclodextrin for the detection of thiophenols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123012. [PMID: 37329832 DOI: 10.1016/j.saa.2023.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Thiophenol and its derivatives are compounds with high toxicity to organisms and environmental pollution, so it is necessary to detect the level of thiophenols in the environment and biological samples. The probes 1a-b were obtained by introducing the 2,4-dinitrophenyl ether group into diethylcoumarin-salicylaldehyde based compounds. And they can form host-guest compounds with methylated β-cyclodextrin (M-β-CD), the association constants of inclusion complexes are 49.2 M-1, 125 M-1 respectively. The fluorescence intensities of probes 1a-b at 600 nm (1a) and 670 nm (1b) increased significantly in thiophenols detection. Meanwhile, with the addition of M-β-CD, the hydrophobic cavity of M-β-CD significantly increased the fluorescence intensity of probes 1a-b, thus the detection limits of probes 1a-b to thiophenols were reduced from 410 nM, 365 nM to 62 nM, 33 nM respectively. Whereas, the good selectivity and short response time of probes 1a-b towards thiophenols was not affected in the presence of M-β-CD. Moreover, probes 1a-b were used for further water sample detection and HeLa cell imaging experiments due to their good response to thiophenols and the results suggested that probes 1a-b had the potential to detect the content of thiophenols in water samples and living cells.
Collapse
Affiliation(s)
- Hai-Yan Peng
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Gang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
5
|
Deep-Red Emissive Fluorescent Probe for Sensitive Detection of Cysteine in Milk and Living Cells. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Xiao L, Zhang D, Zhang J, Pu S. A iridium(III) complex-based ‘turn-on’ fluorescent probe with two recognition site for rapid detection of thiophenol and its application in water samples and human serum. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
A highly sensitive ‘turn-on’ phosphorescence probe based on iridium(III) complex with polyether segment subunits for rapid detection of thiophenol. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Yan H, Yue Y, Yin C, Zhang Y, Chao J, Huo F. A water-soluble fluorescent probe for the detection of thiophenols in water samples and in cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117905. [PMID: 31865108 DOI: 10.1016/j.saa.2019.117905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Water pollution is the main cause of death of aquatic organisms such as fish et al. Content of thiophenols in water samples is an important indicator for assessing the degree of water pollution. The development of fluorescent probes with high selectivity and high sensitivity to detect thiophenols in water samples is extremely important in both environmental and life sciences. Although several fluorescent probes for thiophenols detection have been reported in recent years, most of them required the assistance of organic solvents to remedy the restriction caused by the poor water solubility of the probe, which did not fully reflect the actual situation of thiophenols in actual water samples. To fully overcome this shortage, we modified the 1,8-naphthylimide moiety with carboxyl to obtain a water-soluble fluorescent probe which could react with thiophenols specifically through nucleophilic aromatic substitution reaction (SNAr) reaction with turn-on fluorescent responses. The corresponding detection limit was 71 nM. Supported by the spectroscopic changes, test strips based on the probe could detect thiophenols quantificationally and conveniently. At the same time, the probe could detect thiophenols in water sample with quantitative recovery. Besides, cell imaging experiments demonstrated the possibility of the probe to detect thiophenols in living cells.
Collapse
Affiliation(s)
- Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
Dong L, Chen GR, He XP, Vidal S. Thiophenol detection using an AIE fluorescent probe through self-assembly with TPE-based glycoclusters. Org Biomol Chem 2019; 17:9251-9256. [PMID: 31584602 DOI: 10.1039/c9ob01937e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a novel green-emitting tetraphenylethylene-dicyanomethylene-4H-pyran (TPE-DCM) based fluorescent probe (TD-1). Conjugating TPE and DCM moieties allowed TD-1 to display high selectivity for thiophenol with excellent AIE properties in aqueous solution. Nevertheless, the poor water solubility of the hydrophobic structure resulted in a weak and unstable emission intensity. The non-covalent self-assembly of TD-1 with a TPE glycocluster (TPE2S) led to a largely improved water solubility producing a reliable and stable sensing system. The corresponding glyco-probe could sensitively detect exogenous thiophenol concentrations in PBS buffer or environmental water samples.
Collapse
Affiliation(s)
- Lei Dong
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS and Université Claude Bernard Lyon 1, Université de Lyon, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | | | | | | |
Collapse
|
10
|
Hao Y, Yin Q, Zhang Y, Xu M, Chen S. Recent Progress in the Development of Fluorescent Probes for Thiophenol. Molecules 2019; 24:E3716. [PMID: 31623065 PMCID: PMC6832550 DOI: 10.3390/molecules24203716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Thiophenol (PhSH) belongs to a class of highly reactive and toxic aromatic thiols with widespread applications in the chemical industry for preparing pesticides, polymers, and pharmaceuticals. In this review, we comprehensively summarize recent progress in the development of fluorescent probes for detecting and imaging PhSH. These probes are classified according to recognition moieties and are detailed on the basis of their structures and sensing performances. In addition, prospects for future research are also discussed.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Qianye Yin
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
11
|
Zheng ZB, Han YF, Ge YQ, Cui JC, Zuo J, Nie K. Rapid and selective detection of biothiols by novel ruthenium(II) complex-based phosphorescence probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:328-334. [PMID: 30909089 DOI: 10.1016/j.saa.2019.03.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Considering the excellent photochemical properties of ruthenium(II) complexes, two new ruthenium(II) complexes, RuL1-DNBS and RuL2-DNBS, have been developed as phosphorescence probes for detection of biothiols in 100:1 (v/v) Hepes buffer (20 mM, pH = 7.2)/CH3CN solution. The response rate was highly improved of these two probes toward biothiols because the steric interactions between 1H-imidazo [4, 5-f] [1,10] phenanthroline group and ortho-2, 4-dinitrobenzensulfonate resulted in a relatively rapid thiol-induced SNAr substitution reaction. RuL1-DNBS and RuL2-DNBS were weakly phosphorescent owing to the effectual photoinduced electron transfer from ruthenium(II) luminophore to the sensing group, 2,4-dinitrobenzenesulfonyl. After reacting with biothiols, the 2,4-dinitrobenzenesulfonyl group of RuL1-DNBS and RuL2-DNBS were cleavaged and the RuL1 and RuL2 were obtained. Meanwhile, the phosphorescence were "turn-on". Both of these two probes can detect biothiols sensitively and selectively under physiological conditions with submicromolar detection limits. Furthermore, application of RuL2-DNBS for detecting of intracellular biothiols has been successfully performed in living Glioma cells.
Collapse
Affiliation(s)
- Ze-Bao Zheng
- School of Chemistry and Chemical Engineering, Taishan University, Taian 271021, PR China.
| | - Yin-Feng Han
- School of Chemistry and Chemical Engineering, Taishan University, Taian 271021, PR China
| | - Yan-Qing Ge
- School of Chemical Engineering, Taishan Medical University, Taian, Shandong 271016, PR China.
| | - Ji-Chun Cui
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Jian Zuo
- School of Chemistry and Chemical Engineering, Taishan University, Taian 271021, PR China
| | - Kun Nie
- School of Chemistry and Chemical Engineering, Taishan University, Taian 271021, PR China
| |
Collapse
|
12
|
Li Z, Liu C, Yu C, Yuan R, Jia P, Wang Z, Duan Q, Zhu H, Zhu B, Sheng W. A water-soluble and highly specific fluorescent probe for imaging thiophenols in living cells and zebrafish. NEW J CHEM 2019. [DOI: 10.1039/c9nj00324j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A water-soluble and highly specific fluorescent probe was developed to track thiophenols in living cells and zebrafish.
Collapse
|
13
|
Wang C, Wang Y, Wang G, Chen S, Huang C. Two-isophorone fluorophore-based design of a ratiometric fluorescent probe and its application in the sensing of biothiols. J Mater Chem B 2019; 7:5633-5639. [DOI: 10.1039/c9tb01671f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A newly designed ratiometric fluorescent probe is applied in the sensing of biothiols.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Yang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Guanyang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Shangjun Chen
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
14
|
Kim KR, Kim HJ, Hong JI. Electrogenerated Chemiluminescent Chemodosimeter Based on a Cyclometalated Iridium(III) Complex for Sensitive Detection of Thiophenol. Anal Chem 2018; 91:1353-1359. [DOI: 10.1021/acs.analchem.8b03445] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoon Jun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-In Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|