1
|
In situ enzymatic generation of Au/Pt nanoparticles as an analytical photometric system: proof of concept determination of tyramine. Mikrochim Acta 2023; 190:114. [PMID: 36877272 PMCID: PMC9988730 DOI: 10.1007/s00604-023-05698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
In situ enzymatic generation of bimetallic nanoparticles, mainly Au/Pt, overcomes the drawbacks (continuous absorbance drift, modest LOQ, and long-time reaction) observed when AuNP alone are produced. In this study, Au/Pt nanoparticles have been characterized by EDS, XPS, and HRTEM images using the enzymatic determination of tyramine with tyramine oxidase (TAO) as a model. Under experimental conditions, the Au/Pt NPs show an absorption maximum at 580 nm which can be related to the concentration of tyramine in the range 1.0 × 10-6M to 2.5 × 10-4M with a RSD of 3.4% (n = 5, using 5 × 10-6M tyramine). The Au/Pt system enables low LOQ (1.0 × 10-6 M), high reduction of the absorbance drift, and a significant shortening of the reaction time (i.e., from 30 to 2 min for a [tyramine] = 1 × 10-4M); additionally, a better selectivity is also obtained. The method has been applied to tyramine determination in cured cheese and no significant differences were obtained compared to a reference method (HRP:TMB). The effect of Pt(II) seems to involve the previous reduction of Au(III) to Au(I) and NP generation from this oxidation state. Finally, a three-step (nucleation-growth-aggregation) kinetic model for the generation of NPs is proposed; this has enabled us to obtain a mathematical equation which explains the experimentally observed variation of the absorbance with time.
Collapse
|
2
|
Selective generation of gold nanostructures mediated by flavo-enzymes to develop optical biosensors. Biosens Bioelectron 2022; 215:114579. [DOI: 10.1016/j.bios.2022.114579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
|
3
|
Qian L, Elmahdy R, Raj Thiruppathi A, Chen A. An ultrasensitive electrochemical sensor for the detection of acetaminophen via a three-dimensional hierarchical nanoporous gold wire electrode. Analyst 2021; 146:4525-4534. [PMID: 34137402 DOI: 10.1039/d1an00755f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acetaminophen is one of the most commonly used non-steroidal anti-inflammatory drugs worldwide. However, due to the increasing popularity of this drug, overdosing and the contamination of ambient waterways have emerged as major issues. Here, we report on a reliable, ultrasensitive, and easy-to-use sensor for the electrochemical detection of acetaminophen. This sensor employs a gold wire electrode with a unique three-dimensional hierachical nanoporous structure, fabricated using a dissolution, disproportion and deposition procedure. In consideration of optimal sensitivity and reproducibility, the most suitable nanoporous gold electrode was employed for the detection of acetamiophen among a set of nanoporous electrodes made under different reaction times. It was found that the pore size, film thickness, and electrochemically active surface area (ECSA) played major roles in the fouling resistance of the developed sensor. The ECSA of the selected sensor was increased by 15.8 times after the post-treatment. The 3D nanoporous electrode demonstrated excellent performance for the detection of acetaminophen with a low detection limit of 3.37 nM, and a strong anti-interference capability. The developed nanoporous Au electrode proved effective for the detection of acetaminophen in real sheep serum, which confirmed its promising application for medical diagnostics and pollutant surveilliance in source waters.
Collapse
Affiliation(s)
- Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2 W1, Canada.
| | - Reem Elmahdy
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2 W1, Canada.
| | - Antony Raj Thiruppathi
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2 W1, Canada.
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2 W1, Canada.
| |
Collapse
|
4
|
Electrochemiluminescence immunosensor for cytokeratin fragment antigen 21-1 detection using electrochemically mediated atom transfer radical polymerization. Mikrochim Acta 2021; 188:115. [PMID: 33686530 PMCID: PMC7940335 DOI: 10.1007/s00604-020-04677-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The cytokeratin fragment antigen 21-1 (CYFRA 21-1) protein is a critical tumor biomarker tightly related to non-small cell lung cancer (NSCLC). Herein, we prepared an effective electrochemiluminescence (ECL) immunosensor for CYFRA 21-1 detection using electrochemically mediated atom transfer radical polymerization (eATRP). The CYFRA 21-1 antigen was fixed on the electrode surface by constructing a sandwich type antibody-antigen-antibody immune system. The sensitivity of ECL was improved by using the eATRP reaction. In this method, eATRP was applied to CYFRA 21-1 detection antibody with N-acryloyloxysuccinimide as functional monomer. This is the first time that ECL and eATRP signal amplification technology had been combined. Under the optimized testing conditions, the immunosensor showed a good linear relation in the range from 1 fg mL−1 to 1 μg mL−1 at a limit of detection of 0.8 fg mL−1 (equivalent to ~ 134 molecules in a 10 μL sample). The ECL immunosensing system based on eATRP signal amplification technology provided a new way for rapid diagnosis of lung cancer by detecting CYFRA 21-1. The paper prepared an electrochemiluminescence biosensor for ultrasensitive detection of CYFRA 21-1 via eATRP signal amplification strategy, which had the advantages of high sensitivity, reproducibility, and held potential prospect for analysis of low-abundance. ![]()
Collapse
|
5
|
Kang J, Jang H, Yeom G, Kim MG. Ultrasensitive Detection Platform of Disease Biomarkers Based on Recombinase Polymerase Amplification with H-Sandwich Aptamers. Anal Chem 2020; 93:992-1000. [PMID: 33296598 DOI: 10.1021/acs.analchem.0c03822] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The detection of trace protein biomarkers is essential in the diagnostic field. Protein detection systems ranging from widely used enzyme-linked immunosorbent assays to simple, inexpensive approaches, such as lateral flow immunoassays, play critical roles in medical and drug research. Despite continuous progress, current systems are insufficient for the diagnosis of diseases that require high sensitivity. In this study, we developed a heterogeneous sandwich-type sensing platform based on recombinase polymerase amplification using DNA aptamers specific to the target biomarker. Only the DNA bound to the target in the form of a heterogeneous sandwich was selectively amplified, and the fluorescence signal of an intercalating dye added before the amplification reaction was detected, thereby enabling high specificity and sensitivity. We applied this method for the detection of protein biomarkers for various infectious diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and observed attomolar-level detection of biomarkers and low cross-reactivity between different viruses. We also confirmed detection efficiency of the proposed method using clinical samples. These results demonstrate that the proposed sensing platform can be used to diagnose various diseases requiring high sensitivity, specificity, and accuracy.
Collapse
Affiliation(s)
- Juyoung Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyungjun Jang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Gyuho Yeom
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Magnetic bead-based photoelectrochemical immunoassay for sensitive detection of carcinoembryonic antigen using hollow cadmium sulfide. Talanta 2020; 219:121215. [DOI: 10.1016/j.talanta.2020.121215] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
|
7
|
Larkin IN, Garimella V, Yamankurt G, Scott AW, Xing H, Mirkin CA. Dual-Readout Sandwich Immunoassay for Device-Free and Highly Sensitive Anthrax Biomarker Detection. Anal Chem 2020; 92:7845-7851. [PMID: 32437125 PMCID: PMC7418077 DOI: 10.1021/acs.analchem.0c01090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a dual-readout, AuNP-based sandwich immunoassay for the device-free colorimetric and sensitive scanometric detection of disease biomarkers. An AuNP-antibody conjugate serves as a signal transduction and amplification agent by promoting the reduction and deposition of either platinum or gold onto its surface, generating corresponding colorimetric or light scattering (scanometric) signals, respectively. We apply the Pt-based colorimetric readout of this assay to the discovery of a novel monoclonal antibody (mAb) sandwich pair for the detection of an anthrax protective antigen (PA83). The identified antibody pair detects PA83 down to 1 nM in phosphate-buffered saline and 5 nM in human serum, which are physiologically relevant concentrations. Reducing gold rather than platinum onto the mAb-AuNP sandwich enables scanometric detection of subpicomolar PA83 concentrations, over 3 orders of magnitude more sensitive than the colorimetric readout.
Collapse
Affiliation(s)
- Isaac N Larkin
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60608, United States
| | - Viswanadham Garimella
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| | - Gokay Yamankurt
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60608, United States
| | - Alexander W Scott
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| | - Hang Xing
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| |
Collapse
|
8
|
Díez‐Buitrago B, Barroso J, Saa L, Briz N, Pavlov V. Facile Synthesis and Characterization of Ag/Ag
2
S Nanoparticles Enzymatically Grown In Situ and their Application to the Colorimetric Detection of Glucose Oxidase. ChemistrySelect 2019. [DOI: 10.1002/slct.201901673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Beatriz Díez‐Buitrago
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Javier Barroso
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Laura Saa
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Nerea Briz
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Valeri Pavlov
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| |
Collapse
|
9
|
|