1
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
2
|
Suryavanshi P, Bodas D. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip. Nanotheranostics 2024; 8:380-400. [PMID: 38751938 PMCID: PMC11093718 DOI: 10.7150/ntno.87818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| |
Collapse
|
3
|
Currens ER, Armbruster MR, Castiaux AD, Edwards JL, Martin RS. Evaluation and optimization of PolyJet 3D-printed materials for cell culture studies. Anal Bioanal Chem 2022; 414:3329-3339. [PMID: 35274156 PMCID: PMC9018575 DOI: 10.1007/s00216-022-03991-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022]
Abstract
Use of 3D printing for microfluidics is a rapidly growing area, with applications involving cell culture in these devices also becoming of interest. 3D printing can be used to create custom-designed devices that have complex features and integrate different material types in one device; however, there are fewer studies studying the ability to culture cells on the various substrates that are available. This work describes the effect of PolyJet 3D-printing technology on cell culture of two cell lines, bovine pulmonary artery endothelial cells (BPAECs) and Madin-Darby Canine Kidney (MDCK) cells, on two different types of printed materials (VeroClear or MED610). It was found that untreated devices, when used for studies of 1 day or more, led to unsuccessful culture. A variety of device treatment methodologies were investigated, with the most success coming from the use of sodium hydroxide/sodium metasilicate solution. Devices treated with this cleaning step resulted in culture of BPAECs and MDCK cells that were more similar to what is obtained in traditional culture flasks (in terms of cell morphology, viability, and cell density). LC-MS/MS analysis (via Orbitrap MS) was used to determine potential leachates from untreated devices. Finally, the use of a fiber scaffold in the devices was utilized to further evaluate the treatment methodology and to also demonstrate the ability to perform 3D culture in such devices. This study will be of use for researchers wanting to utilize these or other cell types in PolyJet-based 3D-printed devices.
Collapse
Affiliation(s)
- Emily R Currens
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA
| | | | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA.,Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA
| | - James L Edwards
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA. .,Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| |
Collapse
|
4
|
Darge HF, Chuang SH, Lai JY, Lin SY, Tsai HC. Preparation of thermosensitive PNIPAm-based copolymer coated cytodex 3 microcarriers for efficient nonenzymatic cell harvesting during 3D culturing. Biotechnol Bioeng 2021; 118:4076-4091. [PMID: 34251680 DOI: 10.1002/bit.27885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
Enzymatic detachment of cells might damage important features and functions of cells and could affect subsequent cell-based applications. Therefore, nonenzymatic cell detachment using thermosensitive polymer matrix is necessary for maintaining cell quality after harvesting. In this study, we prepared thermosensitive PNIPAm-co-AAc-b-PS and PNIPAm-co-AAm-b-PS copolymers and low critical solution temperature (LCST) was tuned near to body temperature. Then, spin coated polymer films were prepared for cell adhesion and thermal-induced cell detachment. The alpha-step analysis and scanning electron microscope image of the films suggested that the thickness of the films depends on the molecular weight and concentration which ranged from 206 to 1330 nm for PNIPAm-co-AAc-b-PS and 97.5-497 nm for PNIPAm-co-AAm-b-PS. The contact angles of the films verified that the polymer surface was moderately hydrophilic at 37°C. Importantly, RAW264.7 cells were convincingly proliferated on the films to a confluent of >80% within 48 h and abled to detach by reducing the temperature. However, relatively more cells were grown on PNIPAm-co-AAm-b-PS (5%w/v) films and thermal-induced cell detachment was more abundant in this formulation. As a result, PNIPAm-co-AAm-b-PS (5%w/v) was further used to coat commercial cytodex 3 microcarriers for 3D cell culturing and interestingly enhanced cell detachment with preserved potential of recovery was observed at a temperature of below LCST. Thus, surface modification of microcarriers with thermosensitive PNIPAm-co-AAm-b-PS could be vital strategy for nonenzymatic cell detachment and to achieve adequate number of cells with maximum cell viability and functionality.
Collapse
Affiliation(s)
- Haile F Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shun-Hao Chuang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| |
Collapse
|
5
|
Kabandana GKM, Ratajczak AM, Chen C. Making quantitative biomicrofluidics from microbore tubing and 3D-printed adapters. BIOMICROFLUIDICS 2021; 15:034107. [PMID: 34084257 PMCID: PMC8140816 DOI: 10.1063/5.0052314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microfluidic technology has tremendously facilitated the development of in vitro cell cultures and studies. Conventionally, microfluidic devices are fabricated with extensive facilities by well-trained researchers, which hinder the widespread adoption of the technology for broader applications. Enlightened by the fact that low-cost microbore tubing is a natural microfluidic channel, we developed a series of adaptors in a toolkit that can twine, connect, organize, and configure the tubing to produce functional microfluidic units. Three subsets of the toolkit were thoroughly developed: the tubing and scoring tools, the flow adaptors, and the 3D cell culture suite. To demonstrate the usefulness and versatility of the toolkit, we assembled a microfluidic device and successfully applied it for 3D macrophage cultures, flow-based stimulation, and automated near real-time quantitation with new knowledge generated. Overall, we present a new technology that allows simple, fast, and robust assembly of customizable and scalable microfluidic devices with minimal facilities, which is broadly applicable to research that needs or could be enhanced by microfluidics.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Adam Michael Ratajczak
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
6
|
Jones CG, Huang T, Chung JH, Chen C. 3D-Printed, Modular, and Parallelized Microfluidic System with Customizable Scaffold Integration to Investigate the Roles of Basement Membrane Topography on Endothelial Cells. ACS Biomater Sci Eng 2021; 7:1600-1607. [PMID: 33545000 DOI: 10.1021/acsbiomaterials.0c01752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because dysfunctions of endothelial cells are involved in many pathologies, in vitro endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible three-dimensional (3D) structure of the native extracellular matrix (ECM). Endothelial cells rest on the basement membrane in vivo, which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 μL/min, which encompassed the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells and thus increased nitric oxide production. There has not been an endothelial model like this, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling.
Collapse
Affiliation(s)
- Curtis G Jones
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Tianjiao Huang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
7
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
8
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
9
|
Huang T, Jones CG, Chung JH, Chen C. Microfibrous Extracellular Matrix Changes the Liver Hepatocyte Energy Metabolism via Integrins. ACS Biomater Sci Eng 2020; 6:5849-5856. [PMID: 33320566 DOI: 10.1021/acsbiomaterials.0c01311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell line-based liver models are critical tools for liver-related studies. However, the conventional monolayer culture of hepatocytes, the most widely used in vitro model, does not have the extracellular matrix (ECM), which contributes to the three-dimensional (3D) arrangement of the hepatocytes in the liver. As a result, the metabolic properties of the hepatocytes in the monolayer tissue culture may not accurately reflect those of the hepatocytes in the liver. Here, we developed a modular platform for 3D hepatocyte cultures on fibrous ECMs produced by electrospinning, a technique that can turn a polymer solution to the micro/nanofibers and has been widely used to produce scaffolds for 3D cell cultures. Metabolomics quantitation by liquid chromatography-mass spectrometry (LC-MS) indicated that Huh7 hepatocytes grown in microfibers electrospun from silk fibroin exhibited reduced glycolysis and tricarboxylic acid (TCA) cycle, as compared to the cells cultured as a monolayer. Further mechanistic studies suggested that integrins were correlated to the ECM's effects. This is the first time to report how an ECM scaffold could affect the fundamental metabolism of the hepatocytes via integrins.
Collapse
Affiliation(s)
- Tianjiao Huang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Curtis G Jones
- The Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chengpeng Chen
- The Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
10
|
Dias FTG, Rempel SP, Agnol LD, Bianchi O. The main blow spun polymer systems: processing conditions and applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02173-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Molde J, Steele JAM, Pastino AK, Mahat A, Murthy NS, Kohn J. A step toward engineering thick tissues: Distributing microfibers within 3D printed frames. J Biomed Mater Res A 2020; 108:581-591. [PMID: 31721423 PMCID: PMC7078963 DOI: 10.1002/jbm.a.36838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/11/2022]
Abstract
Microfiber mats for tissue engineering scaffolds support cell growth, but are limited by poor cell infiltration and nutrient transport. Three-dimensional printing, specifically fused deposition modeling (FDM), can rapidly produce customized constructs, but macroscopic porosity resulting from low resolution reduces cell seeding efficiency and prevents the formation of continuous cell networks. Here we describe the fabrication of hierarchical scaffolds that integrate a fibrous microenvironment with the open macropore structure of FDM. Biodegradable tyrosine-derived polycarbonate microfibers were airbrushed iteratively between layers of 3D printed support structure following optimization. Confocal imaging showed layers of airbrushed fiber mats supported human dermal fibroblast growth and extracellular matrix development throughout the scaffold. When implanted subcutaneously, hierarchical scaffolds facilitated greater cell infiltration and tissue formation than airbrushed fiber mats. Fibronectin matrix assembled in vitro throughout the hierarchical scaffold survived decellularization and provided a hybrid substrate for recellularization with mesenchymal stromal cells. These results demonstrate that by combining FDM and airbrushing techniques we can engineer customizable hierarchical scaffolds for thick tissues that support increased cell growth and infiltration.
Collapse
Affiliation(s)
- Joseph Molde
- New Jersey Center for BiomaterialsRutgers – The State University of New JerseyPiscatawayNJ
| | - Joseph A. M. Steele
- New Jersey Center for BiomaterialsRutgers – The State University of New JerseyPiscatawayNJ
| | - Alexandra K. Pastino
- New Jersey Center for BiomaterialsRutgers – The State University of New JerseyPiscatawayNJ
| | - Anisha Mahat
- New Jersey Center for BiomaterialsRutgers – The State University of New JerseyPiscatawayNJ
| | - N. Sanjeeva Murthy
- New Jersey Center for BiomaterialsRutgers – The State University of New JerseyPiscatawayNJ
| | - Joachim Kohn
- New Jersey Center for BiomaterialsRutgers – The State University of New JerseyPiscatawayNJ
| |
Collapse
|
12
|
Chimene D, Kaunas R, Gaharwar AK. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902026. [PMID: 31599073 DOI: 10.1002/adma.201902026] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Bioprinting is an emerging approach for fabricating cell-laden 3D scaffolds via robotic deposition of cells and biomaterials into custom shapes and patterns to replicate complex tissue architectures. Bioprinting uses hydrogel solutions called bioinks as both cell carriers and structural components, requiring bioinks to be highly printable while providing a robust and cell-friendly microenvironment. Unfortunately, conventional hydrogel bioinks have not been able to meet these requirements and are mechanically weak due to their heterogeneously crosslinked networks and lack of energy dissipation mechanisms. Advanced bioink designs using various methods of dissipating mechanical energy are aimed at developing next-generation cellularized 3D scaffolds to mimic anatomical size, tissue architecture, and tissue-specific functions. These next-generation bioinks need to have high print fidelity and should provide a biocompatible microenvironment along with improved mechanical properties. To design these advanced bioink formulations, it is important to understand the structure-property-function relationships of hydrogel networks. By specifically leveraging biophysical and biochemical characteristics of hydrogel networks, high performance bioinks can be designed to control and direct cell functions. In this review article, current and emerging approaches in hydrogel design and bioink reinforcement techniques are critically evaluated. This bottom-up perspective provides a materials-centric approach to bioink design for 3D bioprinting.
Collapse
Affiliation(s)
- David Chimene
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Roland Kaunas
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Du XY, Li Q, Wu G, Chen S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903733. [PMID: 31573714 DOI: 10.1002/adma.201903733] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Indexed: 05/28/2023]
Abstract
Superfine multifunctional micro/nanoscale fibrous materials with high surface area and ordered structure have attracted intensive attention for widespread applications in recent years. Microfluidic spinning technology (MST) has emerged as a powerful and versatile platform because of its various advantages such as high surface-area-to-volume ratio, effective heat transfer, and enhanced reaction rate. The resultant well-defined micro/nanoscale fibers exhibit controllable compositions, advanced structures, and new physical/chemical properties. The latest developments and achievements in microfluidic spun fiber materials are summarized in terms of the underlying preparation principles, geometric configurations, and functionalization. Variously architected structures and shapes by MST, including cylindrical, grooved, flat, anisotropic, hollow, core-shell, Janus, heterogeneous, helical, and knotted fibers, are emphasized. In particular, fiber-spinning chemistry in MST for achieving functionalization of fiber materials by in situ chemical reactions inside fibers is introduced. Additionally, the applications of the fabricated functional fibers are highlighted in sensors, microactuators, photoelectric devices, flexible electronics, tissue engineering, drug delivery, and water collection. Finally, recent progress, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
14
|
Castiaux AD, Spence DM, Martin RS. Review of 3D Cell Culture with Analysis in Microfluidic Systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:4220-4232. [PMID: 32051693 PMCID: PMC7015157 DOI: 10.1039/c9ay01328h] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A review with 105 references that analyzes the emerging research area of 3D cell culture in microfluidic platforms with integrated detection schemes. Over the last several decades a central focus of cell culture has been the development of better in vivo mimics. This has led to the evolution from planar cell culture to cell culture on 3D scaffolds, and the incorporation of cell scaffolds into microfluidic devices. Specifically, this review explores the incorporation of suspension culture, hydrogels scaffolds, paper-based scaffolds, and fiber-based scaffolds into microfluidic platforms. In order to decrease analysis time, simplify sample preparation, monitor key signaling pathways involved in cell-to-cell communication or cell growth, and combat the limitations of sample volume/ dilution seen in traditional assays, researchers have also started to focus on integrating detection schemes into the cell culture devices. This review will highlight the work that has been performed towards combining these techniques and will discuss potential future directions. It is clear that microfluidic-based 3D cell culture coupled with quantitative analysis can greatly improve our ability to mimic and understand in vivo systems.
Collapse
Affiliation(s)
- Andre D Castiaux
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103
| |
Collapse
|
15
|
Munshi AS, Chen C, Townsend AD, Martin RS. Use of 3D Printing and Modular Microfluidics to Integrate Cell Culture, Injections and Electrochemical Analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:3364-3374. [PMID: 30923580 PMCID: PMC6433419 DOI: 10.1039/c8ay00829a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fabrication of microchip-based devices using 3-D printing technology offers a unique platform to create separate modules that can be put together when desired for analysis. A 3-D printed module approach offers various advantages such as file sharing and the ability to easily replace, customize, and modify the individual modules. Here, we describe the use of a modular approach to electrochemically detect the ATP-mediated release of nitric oxide (NO) from endothelial cells. Nitric oxide plays a significant role in the vasodilation process; however, detection of NO is challenging due to its short half-life. To enable this analysis, we use three distinct 3-D printed modules: cell culture, sample injection and detection modules. The detection module follows a pillar-based Wall-Jet Electrode design, where the analyte impinges normal to the electrode surface, offering enhanced sensitivity for the analyte. To further enhance the sensitivity and selectivity for NO detection the working electrode (100 μm gold) is modified by the addition of a 27 μm gold pillar and platinum-black coated with Nafion. The use of the pillar electrode leads to three-dimensional structure protruding into the channel enhancing the sensitivity by 12.4 times in comparison to the flat electrode (resulting LOD for NO = 210 nM). The next module, the 3-D printed sample injection module, follows a simple 4-Port injection rotor design made of two separate components that when assembled can introduce a specific volume of analyte. This module not only serves as a cheaper alternative to the commercially available 4-Port injection valves, but also demonstrates the ability of volume customization and reduced dead-volume issues with the use of capillary-free connections. Comparison between the 3-D printed and a commercial 4-Port injection valve showed similar sensitivities and reproducibility for NO analysis. Lastly, the cell culture module contains electrospun polystyrene fibers with immobilized endothelial cells, resulting in 3-D scaffold for cell culture. With the incorporation of all 3 modules, we can make reproducible ATP injections (via the 3-D printed sample injection module) that can stimulate NO release from endothelial cells cultured on a fibrous insert in the cell culture module which can then be quantitated by the pillar WJE module (0.19 ± 0.03 nM/cell, n = 27, 3 inserts analyzed each day, on 9 different days). The modular approach demonstrates the facile creation of custom and modifiable fluidic components that can be assembled as needed.
Collapse
Affiliation(s)
| | | | | | - R. Scott Martin
- corresponding author: Dr. R. Scott Martin, 3501 Laclede Ave, St. Louis, MO, USA 63103, +1 314-977-2836,
| |
Collapse
|