1
|
Sheetal, Sharma P, Kumar A, Sharma N, Giri K, Das P. Oxalic acid as a dual C1 surrogate for heterogeneous palladium-catalyzed tandem four-component quinazolinone synthesis. Chem Commun (Camb) 2024; 60:6043-6046. [PMID: 38775278 DOI: 10.1039/d4cc01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Herein, a heterogeneous Pd/C-catalyzed direct one-step four-component double carbonylative approach for cascade synthesis of 2-aryl quinazolinones has been reported for the first time starting from 2-iodoaniline derivatives and aryl iodides. The given reaction involves the simultaneous implementation of two different gaseous surrogates i.e., ammonium carbamate as an NH3 precursor and oxalic acid as a bi-functional reagent acting as a CO as well as a C-atom surrogate under ligand-free conditions.
Collapse
Affiliation(s)
- Sheetal
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Poonam Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashish Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Navneet Sharma
- Department of Computational Sciences, Central University of Punjab, 15140, India
| | - Kousik Giri
- Department of Computational Sciences, Central University of Punjab, 15140, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Ma C, Wang S, Sheng Y, Zhao XL, Xing D, Hu W. Synthesis and Characterization of Donor-Acceptor Iron Porphyrin Carbenes and Their Reactivities in N-H Insertion and Related Three-Component Reaction. J Am Chem Soc 2023; 145:4934-4939. [PMID: 36811995 DOI: 10.1021/jacs.2c12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Iron porphyrin carbenes (IPCs) have been extensively recognized as the reactive intermediates in various iron porphyrin-catalyzed carbene transfer reactions. While donor-acceptor diazo compounds have been frequently used for such transformations, the structures and reactivities of donor-acceptor IPCs are less explored. To date, no crystal structures of donor-acceptor IPC complexes have been reported, and therefore, the involvement of IPC intermediacy for such transformations lacks direct evidence. Here we report the synthesis and NMR characterization of several donor-acceptor IPC complexes from iron porphyrin and corresponding donor-acceptor diazo compounds. The X-ray crystal structure of an IPC complex derived from a morpholine-substituted diazo amide was obtained. The carbene transfer reactivities of those IPCs were tested by the N-H insertion reactions with aniline or morpholine as well as the three-component reaction with aniline and γ,δ-unsaturated α-keto ester based on electrophilic trapping of an ammonium ylide intermediate. Based on these results, IPCs were identified as the real intermediates for iron porphyrin-catalyzed carbene transfer reactions from donor-acceptor diazo compounds.
Collapse
Affiliation(s)
- Chaoqun Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuan Sheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Bakulina O, Inyutina A, Dar’in D, Krasavin M. Multicomponent Reactions Involving Diazo Reagents: A 5-Year Update. Molecules 2021; 26:6563. [PMID: 34770972 PMCID: PMC8587191 DOI: 10.3390/molecules26216563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes recent developments in multicomponent reactions of diazo compounds. The role of diazo reagent and the type of interaction between components was analyzed to structure the discussion. In contrast to previous reviews on related topics mostly focused on metal catalyzed transformations, a substantial amount of organocatalytic or catalyst-free methodologies is covered in this work.
Collapse
Affiliation(s)
- Olga Bakulina
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| | | | | | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| |
Collapse
|
4
|
Shaifali, Mehara P, Kumar A, Das P. Pd/C Catalyzed Cascade Synthesis of 2‐Arylquinazolinones from 2‐Iodoacetanilides Employing Ammonia and CO Precursors. ChemCatChem 2021. [DOI: 10.1002/cctc.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaifali
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Pushkar Mehara
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ashish Kumar
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Pralay Das
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
5
|
Kim JN, Lee S. Synthesis of Spirooxindoles Bearing 1,
3‐Oxathiolane
‐2‐thione Moiety From
Isatin‐Derived
Propargylic Alcohols. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jae Nyoung Kim
- Department of Chemistry Chonnam National University Gwangju 500‐757 Korea
| | - Sangku Lee
- Anticancer Agent Research Center KRIBB, Cheongwon 363‐883 Korea
| |
Collapse
|
6
|
Zhou K, Bao M, Sha H, Dong G, Hong K, Xu X, Hu W. Highly diastereoselective synthesis of vicinal diamines via a Rh-catalyzed three-component reaction of diazo compounds with diarylmethanimines and ketimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00083g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh-catalyzed selective three-component reaction of diazo compounds with diarylmethanimines and ketimines is reported that offers an efficient and convenient access to vicinal diamine derivatives with two tertiary stereocenters in high yields.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
7
|
N–H insertion reaction via an iron carbenoid from α-diazophenylpropionate and its application to the formal total synthesis of stizolobinic acid. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Abstract
AbstractThe use of iron catalysis to enable reactions with diazo compounds has emerged as a valuable tool to forge carbon–carbon or carbon–heteroatom bonds. While diazo compounds are often encountered with toxic and expensive metal catalysts, such as Rh, Ru, Pd, Ir, and Cu, a resurgence of Fe catalysis has been observed. This short review will showcase and highlight the recent advances in iron-mediated reactions of diazo compounds.1 Introduction2 Insertion Reactions2.1 Insertion into B–H Bonds2.2 Insertion into Si–H Bonds2.3 Insertion into N–H Bonds2.4 Insertion into S–H bonds3 Ylide Formation and Subsequent Reactions3.1 Doyle–Kirmse Rearrangement3.2 [1,2]-Stevens and Sommelet–Hauser Rearrangements3.3 Olefination Reactions3.4 Cycloaddition Reactions3.5 gem-Difluoroalkenylation4 Three-Component Reactions5 Miscellaneous6 Conclusion
Collapse
|
9
|
Affiliation(s)
- Vasco F. Batista
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Li F, Tang X, Xu Y, Wang C, Zhang L, Zhang J, Liu J, Li Z, Wang L. Hemoglobin-Catalyzed Synthesis of Indolizines Under Mild Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Xuyong Tang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; 130023 Changchun P. R. China
| | - Liu Zhang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Jiaxin Zhang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Jiaxu Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences; Jilin University; 130023 Changchun P. R. China
| |
Collapse
|
11
|
Li J, Ma C, Xing D, Hu W. Catalyst-Free gem-Difunctionalization of Fluoroalkyl-Substituted Diazo Compound with Diselenide or Disulfide and NFSI. Org Lett 2019; 21:2101-2105. [DOI: 10.1021/acs.orglett.9b00382] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiuling Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chaoqun Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|