1
|
Gao S, Zheng H, Xu S, Kong J, Gao F, Wang Z, Li Y, Dai Z, Jiang X, Ding X, Lei H. Novel Natural Carrier-Free Self-Assembled Nanoparticles for Treatment of Ulcerative Colitis by Balancing Immune Microenvironment and Intestinal Barrier. Adv Healthc Mater 2023; 12:e2301826. [PMID: 37681364 DOI: 10.1002/adhm.202301826] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory illness affecting the colon and rectum, with current treatment methods being unable to meet the clinical needs of ulcerative colitis patients. Although nanomedicines are recognized as promising anti-inflammatory medicines, their clinical application is limited by their high cost and unpredictable safety risks. This study reveals that two natural phytochemicals, berberine (BBR) and hesperetin (HST), self-assemble directly to form binary carrier-free multi-functional spherical nanoparticles (BBR-HST NPs) through noncovalent bonds involving electrostatic interactions, π-π stacking, and hydrogen bonding. Because of their synergistic anti-inflammatory activity, berberine-hesperetin nanoparticles (BBR-HST NPs) exhibit significantly better therapeutic effects on UC and inhibitory effects on inflammation than BBR and HST at the same dose by regulating the immune microenvironment and repairing the damaged intestinal barrier. Furthermore, BBR-HST NPs exhibit good biocompatibility and biosafety. Thus, this study proves the potential of novel natural anti-inflammatory nanoparticles as therapeutic agents for UC, which could promote the progress of drug development for UC and eventually benefit patients who suffering from it.
Collapse
Affiliation(s)
- Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shujing Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinqi Jiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
2
|
Wang Z, Lu J, Yuan Z, Pi W, Huang X, Lin X, Zhang Y, Lei H, Wang P. Natural Carrier-Free Binary Small Molecule Self-Assembled Hydrogel Synergize Antibacterial Effects and Promote Wound Healing by Inhibiting Virulence Factors and Alleviating the Inflammatory Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205528. [PMID: 36446719 DOI: 10.1002/smll.202205528] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-infected skin wounds have caused a variety of diseases and seriously endanger global public health. Therefore, multidimensional strategies are urgently to find antibacterial dressings to combat bacterial infections. Antibacterial hydrogels are considered potential wound dressing, while their clinical translation is limited due to the unpredictable risks and high costs of carrier excipients. it is found that the natural star antibacterial and anti-inflammatory phytochemicals baicalin (BA) and sanguinarine (SAN) can directly self-assemble through non-covalent bonds such as electrostatic attraction, π-π stacking, and hydrogen bonding to form carrier-free binary small molecule hydrogel. In addition, BA-SAN gel exhibited a synergistic inhibitory effect on MRSA. And its plasticity and injectability allowed it to be applied as a wound dressing. Due to the matched physicochemical properties and synergistic therapeutic effects, BA-SAN gel can inhibit bacterial virulence factors, alleviate wound inflammation, promote wound healing, and has good biocompatibility. The current study not only provided an antibacterial hydrogel with clinical value but also opened up new prospects that carrier-free hydrogels can be designed and originated from clinically used small-molecule phytochemicals.
Collapse
Affiliation(s)
- Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| |
Collapse
|
3
|
McDowall D, Adams DJ, Seddon AM. Using small angle scattering to understand low molecular weight gels. SOFT MATTER 2022; 18:1577-1590. [PMID: 35147629 DOI: 10.1039/d1sm01707a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The material properties of a gel are determined by the underpinning network that immobilises the solvent. When gels are formed by the self-assembly of small molecules into a so-called low molecular weight gel, the network is the result of the molecules forming one-dimensional objects such as fibres or nanotubes which entangle or otherwise cross-link to form a three-dimensional network. Characterising the one-dimensional objects and the network is difficult. Many conventional techniques rely on drying to probe the network, which often leads to artefacts. An effective tool to probe the gel in the solvated state is small angle scattering. Both small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) can be used. Here, we discuss these approaches and provide a tutorial review to describe how these approaches work, what opportunities there are and how the data treatment should be approached. We aim to show the power of this approach and provide enabling information to make them accessible to the non-specialist.
Collapse
Affiliation(s)
- Daniel McDowall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Annela M Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK.
| |
Collapse
|
4
|
Giuri D, Marshall LJ, Wilson C, Seddon A, Adams DJ. Understanding gel-to-crystal transitions in supramolecular gels. SOFT MATTER 2021; 17:7221-7226. [PMID: 34286796 DOI: 10.1039/d1sm00770j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Libby J Marshall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. and Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
McAulay K, Wang H, Fuentes-Caparrós AM, Thomson L, Khunti N, Cowieson N, Cui H, Seddon A, Adams DJ. Isotopic Control over Self-Assembly in Supramolecular Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8626-8631. [PMID: 32614592 PMCID: PMC7467762 DOI: 10.1021/acs.langmuir.0c01552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It is common to switch between H2O and D2O when examining peptide-based systems, with the assumption being that there are no effects from this change. Here, we describe the effect of changing from H2O to D2O in a number of low-molecular-weight dipeptide-based gels. Gels are formed by decreasing the pH. In most cases, there is little difference in the structures formed at high pH, but this is not universally true. On lowering the pH, the kinetics of gelation are affected and, in some cases, the structures underpinning the gel network are different. Where there are differences in the self-assembled structures, the resulting gel properties are different. We, therefore, show that isotopic control over gel properties is possible.
Collapse
Affiliation(s)
- Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Han Wang
- Department of Chemical and Biomolecular Engineering,
Whiting School of Engineering, Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | - Lisa Thomson
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Nikul Khunti
- Diamond Light Source Ltd., Harwell Science
and Innovation Campus, Didcot OX11 0QX, U.K.
| | - Nathan Cowieson
- Diamond Light Source Ltd., Harwell Science
and Innovation Campus, Didcot OX11 0QX, U.K.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering,
Whiting School of Engineering, Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Annela Seddon
- School
of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
- Bristol Centre for
Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | - Dave J. Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
6
|
Van Lommel R, Rutgeerts LAJ, De Borggraeve WM, De Proft F, Alonso M. Rationalising Supramolecular Hydrogelation of Bis‐Urea‐Based Gelators through a Multiscale Approach. Chempluschem 2019; 85:267-276. [DOI: 10.1002/cplu.201900551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ruben Van Lommel
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
- Department of ChemistryKU Leuven Molecular Design and Synthesis Celestijnenlaan 200F Leuven Chem&Tech box 2404 3001 Leuven Belgium
| | - Laurens A. J. Rutgeerts
- Department of ChemistryKU Leuven Molecular Design and Synthesis Celestijnenlaan 200F Leuven Chem&Tech box 2404 3001 Leuven Belgium
| | - Wim M. De Borggraeve
- Department of ChemistryKU Leuven Molecular Design and Synthesis Celestijnenlaan 200F Leuven Chem&Tech box 2404 3001 Leuven Belgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
7
|
Assembly‐Induced Diverse Optical Property of 4‐Biphenylcarboxy‐Protected Serine and Tyrosine. ChemistrySelect 2019. [DOI: 10.1002/slct.201902353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Draper ER, Adams DJ. Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6506-6521. [PMID: 31038973 DOI: 10.1021/acs.langmuir.9b00716] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-molecular-weight gels are formed by the self-assembly of small molecules into fibrous networks that can immobilize a significant amount of solvent. Here, we focus on our work with a specific class of gelator, the functionalized dipeptide. We discuss the current state of the art in the area, focusing on how these materials can be controlled. We also highlight interesting and unusual observations and unanswered questions in the field.
Collapse
Affiliation(s)
- Emily R Draper
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| |
Collapse
|
9
|
Truskewycz A, Shukla R, Ball AS. Phytofabrication of Iron Nanoparticles for Hexavalent Chromium Remediation. ACS OMEGA 2018; 3:10781-10790. [PMID: 30411070 PMCID: PMC6199743 DOI: 10.1021/acsomega.8b00410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/07/2018] [Indexed: 05/08/2023]
Abstract
Hexavalent chromium is a genotoxic and carcinogenic byproduct of a number of industrial processes, which is discharged into the environment in excessive and toxic concentrations worldwide. In this paper, the synthesis of green iron oxide nanoparticles using extracts of four novel plant species [Pittosporum undulatum, Melia azedarach, Schinus molle, and Syzygium paniculatum (var. australe)] using a "bottom-up approach" has been implemented for hexavalent chromium remediation. Nanoparticle characterizations show that different plant extracts lead to the formation of nanoparticles with different sizes, agglomeration tendencies, and shapes but similar amorphous nature and elemental makeup. Hexavalent chromium removal is linked with the particle size and monodispersity. Nanoparticles with sizes between 5 and 15 nm from M. azedarach and P. undulatum showed enhanced chromium removal capacities (84.1-96.2%, respectively) when compared to the agglomerated particles of S. molle and S. paniculatum with sizes between 30 and 100 nm (43.7-58.7%, respectively) in over 9 h. This study has shown that the reduction of iron salts with plant extracts is unlikely to generate vast quantities of stable zero valent iron nanoparticles but rather favor the formation of iron oxide nanoparticles. In addition, plant extracts with higher antioxidant concentrations may not produce nanoparticles with morphologies optimal for pollutant remediation.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre
for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 71, Bundoora, Victoria 3083, Australia
- Nanobiotechnology
Research Laboratory and Centre for Advanced Materials & Industrial
Chemistry, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia
- E-mail: (A.T.)
| | - Ravi Shukla
- Nanobiotechnology
Research Laboratory and Centre for Advanced Materials & Industrial
Chemistry, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia
| | - Andrew S. Ball
- Centre
for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 71, Bundoora, Victoria 3083, Australia
| |
Collapse
|
10
|
Sauvée C, Ström A, Haukka M, Sundén H. A Multi-Component Reaction towards the Development of Highly Modular Hydrogelators. Chemistry 2018; 24:8071-8075. [DOI: 10.1002/chem.201800635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Claire Sauvée
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Göteborg Sweden
| | - Anna Ström
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Göteborg Sweden
| | - Matti Haukka
- Department of Chemistry; University of Jyväskylä; P.O. Box 35 40014 University of Jyväskylä Finland
| | - Henrik Sundén
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Göteborg Sweden
| |
Collapse
|
11
|
Simalou O, Boyode P, Kpegba K, Xue P, Lu R, Zhang T. Self-assembling and photophysical properties of the organogelators based on cyanostyryl-substituted carbazoles. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Liu M, Ouyang G, Niu D, Sang Y. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front 2018. [DOI: 10.1039/c8qo00620b] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of supramolecular gelatons for the design of gels was proposed and described.
Collapse
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dian Niu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
13
|
Ghosh D, Ferfolja K, Drabavičius Ž, Steed JW, Damodaran KK. Crystal habit modification of Cu(ii) isonicotinate–N-oxide complexes using gel phase crystallisation. NEW J CHEM 2018. [DOI: 10.1039/c8nj05036h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the crystallisation of three forms of the copper(ii) isonicotinate–N-oxide complex and their phase interconversion via solvent-mediated crystal-to-crystal transformation and the selective crystallisation of one form via gel phase crystallisation.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| | - Katja Ferfolja
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| | | | | | - Krishna K. Damodaran
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| |
Collapse
|
14
|
Canrinus T, Lee WWY, Feringa BL, Bell SEJ, Browne WR. Supramolecular Low-Molecular-Weight Hydrogelator Stabilization of SERS-Active Aggregated Nanoparticles for Solution and Gas Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8805-8812. [PMID: 28669185 PMCID: PMC5588087 DOI: 10.1021/acs.langmuir.7b01445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The potential of surface-enhanced Raman scattering (SERS) spectroscopy in both laboratory and field analyses depends on the reliable formation of so-called SERS hot spots, such as those formed during gold or silver nanoparticle aggregation. Unfortunately such aggregates are not stable in solution because they typically grow until they precipitate. Here we describe the use of low-molecular-weight hydrogels formed through pH-triggered self-assembly that occurs at a rate that well matches the rates of aggregation of Au or Ag colloids, allowing them to be trapped at the SERS-active point in the aggregation process. We show that the colloid-containing gels give SERS signals similar to the parent colloid but are stable over several months. Moreover, lyophilized gels can be stored as dry powders for subsequent use in the analyses of gases and dissolved analytes by contact with either solutions or vapors. The present system shows how the combination of pH-switchable low-molecular-weight gelators and pH-induced colloid aggregation can be combined to make a highly stable, low-cost SERS platform for the detection of volatile organic compounds and the microvolume analysis of solutions.
Collapse
Affiliation(s)
- Tjalling
R. Canrinus
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry and Synthetic Organic
Chemistry, Stratingh Institute for Chemistry, Faculty
of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wendy W. Y. Lee
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland
| | - Ben L. Feringa
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry and Synthetic Organic
Chemistry, Stratingh Institute for Chemistry, Faculty
of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry and Synthetic Organic
Chemistry, Stratingh Institute for Chemistry, Faculty
of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
15
|
Klein-Hitpaß M, Lynes AD, Hawes CS, Byrne K, Schmitt W, Gunnlaugsson T. A Schiff-base cross-linked supramolecular polymer containing diiminophenol compartments and its interaction with copper(II) ions. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1362108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marcel Klein-Hitpaß
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Amy D. Lynes
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Chris S. Hawes
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin Byrne
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
| | - Wolfgang Schmitt
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
16
|
Lynes AD, Hawes CS, Ward EN, Haffner B, Möbius ME, Byrne K, Schmitt W, Pal R, Gunnlaugsson T. Benzene-1,3,5-tricarboxamide n-alkyl ester and carboxylic acid derivatives: tuneable structural, morphological and thermal properties. CrystEngComm 2017. [DOI: 10.1039/c7ce00206h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Hawes CS, Lynes AD, Byrne K, Schmitt W, Ryan G, Möbius ME, Gunnlaugsson T. A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chem Commun (Camb) 2017; 53:5989-5992. [DOI: 10.1039/c7cc03482b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A heterotopic naphthalimide ligand N-(4-picolyl)-4-(4′-carboxyphenoxy)-1,8-naphthalimide HL is utilised for the formation of self-assembled soft materials.
Collapse
Affiliation(s)
- Chris S. Hawes
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Amy D. Lynes
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Kevin Byrne
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Wolfgang Schmitt
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Gavin Ryan
- School of Physics
- Trinity College Dublin
- Dublin 2
- Ireland
| | | | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| |
Collapse
|
18
|
Paikar A, Haldar D. Dynamic self-assembled polymer: HCl responsive inversion of supramolecular polymer handedness. RSC Adv 2017. [DOI: 10.1039/c7ra08035b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Discotic trisamide formed a self-assembled polymer and exhibits inversion of supramolecular polymer handedness in the presence of HCl.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|