1
|
Bräuniger T. High-Precision Determination of NMR Interaction Parameters by Measurement of Single Crystals: A Review of Classical and Advanced Methods. Molecules 2024; 29:4148. [PMID: 39274996 PMCID: PMC11397636 DOI: 10.3390/molecules29174148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
In this review, the process of extracting precise values for NMR interaction tensors from single crystal samples is systematically explored. Starting with a description of the orientation dependence of the considered interactions, i.e., chemical shift, dipolar, and quadrupole interaction, the techniques for acquiring and analysing single-crystal spectra are outlined. This includes the 'classical' approach, which requires the acquisition of three rotation patterns around three rotation axes that are orthogonal to each other, as well as more recent strategies aimed at reducing the number of required NMR spectra. One such strategy is the 'single-rotation method', which exploits the symmetry relations between tensors in the crystal structure to reduce the necessary amount of orientation-dependent data. This concept may be extended to additionally include the orientation of the goniometer axis itself in the data fit, which may be termed the 'minimal-rotation method'. Other, more exotic schemes, such as the use of specialised probe designs or the investigation of single crystals under magic-angle-spinning, are also briefly discussed. Actual values of NMR interaction tensors as determined from the various single-crystal methods have been collected and are provided in tables for spin I=1/2, I=1, and half-integer spins with I>1/2.
Collapse
Affiliation(s)
- Thomas Bräuniger
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
2
|
Pointner MM, Pritzl RM, Albrecht JM, Blahusch L, Wright JP, Bright EL, Giacobbe C, Oeckler O, Schnick W. Multicationic Tetrahedra Networks: Alkaline-Earth-Centered Polyhedra and Non-Condensed AlN 6-Octahedra in the Imidonitridophosphates AE 2AlP 8N 15(NH) (AE=Ca, Sr, Ba). Chemistry 2024; 30:e202400766. [PMID: 38483015 DOI: 10.1002/chem.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Indexed: 04/05/2024]
Abstract
A series of isostructural imidonitridophosphates AE2AlP8N15(NH) (AE=Ca, Sr, Ba) was synthesized at high-pressure/high-temperature conditions (1400 °C and 5-9 GPa) from alkaline-earth metal nitrides or azides Ca3N2/Sr(N3)2/Ba(N3)2 and the binary nitrides AlN and P3N5. NH4F served as a hydrogen source and mineralizing agent. The crystal structures were determined by single-crystal X-ray diffraction and feature a three-dimensional network of vertex-sharing PN4-tetrahedra forming diverse-sized rings that are occupied by aluminum and alkaline earth ions. These structures represent another example of nitridophosphate-based networks that simultaneously incorporate AlN6-octahedra and alkaline-earth-centered polyhedra, with aluminum not participating in the tetrahedra network. They differ from previously reported ones by incorporating non-condensed octahedra instead of strongly condensed octahedra units and contribute to the diversity of multicationic nitridophosphate network structures. The results are supported by atomic resolution EDX mapping, solid-state NMR and FTIR measurements. Eu2+-doped samples show strong luminescence with narrow emissions in the range of green to blue under UV excitation, marking another instance of Eu2+-luminescence within imidonitridophosphates.
Collapse
Affiliation(s)
- Monika M Pointner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Reinhard M Pritzl
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Jonas M Albrecht
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Leopold Blahusch
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Jonathan P Wright
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - Eleanor Lawrence Bright
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - Carlotta Giacobbe
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - Oliver Oeckler
- Institute for Inorganic Chemistry and Crystallography, Leipzig University, Scharnhorststraße 20, 04275, Leipzig, Germany
| | - Wolfgang Schnick
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
3
|
Pointner MM, Fisher KR, Weidemann M, Wolf F, Wright JP, Bright EL, Giacobbe C, Oeckler O, Schnick W. Cr 5.7Si 2.3P 8N 24-A Chromium(+IV) Nitridosilicate Phosphate with Amphibole-Type Structure. Angew Chem Int Ed Engl 2024; 63:e202401421. [PMID: 38361110 DOI: 10.1002/anie.202401421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
The first nitridic analog of an amphibole mineral, the quaternary nitridosilicate phosphate Cr5.7Si2.3P8N24 was synthesized under high-pressure high-temperature conditions at 1400 °C and 12 GPa from the binary nitrides Cr2N, Si3N4 and P3N5, using NH4N3 and NH4F as additional nitrogen source and mineralizing agent, respectively. The crystal structure was elucidated by single-crystal X-ray diffraction with microfocused synchrotron radiation (C2/m, a=9.6002(19), b=17.107(3), c=4.8530(10) Å, β=109.65(3)°). The elemental composition was analyzed by energy dispersive X-ray spectroscopy. The structure consists of vertex-sharing PN4-tetrahedra forming zweier double chains and edge-sharing (Si,Cr)-centered octahedra forming separated ribbons. Atomic resolution scanning transmission electron microscopy shows ordered Si and Cr sites next to a disordered Si/Cr site. Optical spectroscopy indicates a band gap of 2.1 eV. Susceptibility measurements show paramagnetic behavior and support the oxidation state Cr+IV, which is confirmed by EPR. The comprehensive analysis expands the field of Cr-N chemistry and provides access to a nitride analog of one of the most prevalent silicate structures.
Collapse
Affiliation(s)
- Monika M Pointner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Katherine R Fisher
- Department of Chemical and Pharmaceutical Sciences, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, United Kingdom
| | - Martin Weidemann
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Florian Wolf
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Jonathan P Wright
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - Eleanor Lawrence Bright
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - Carlotta Giacobbe
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - Oliver Oeckler
- Institute of Inorganic Chemistry and Crystallography, Leipzig University, Scharnhorststraße 20, 04275, Leipzig, Germany
| | - Wolfgang Schnick
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
4
|
Eisenburger L, Weippert V, Oeckler O, Schnick W. High-Pressure Synthesis of Sc 5 P 12 N 23 O 3 and Ti 5 P 12 N 24 O 2 by Activation of the Binary Nitrides ScN and TiN with NH 4 F. Chemistry 2021; 27:14184-14188. [PMID: 34407247 PMCID: PMC8596507 DOI: 10.1002/chem.202101858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Multinary transition metal nitrides and oxonitrides are a versatile and intriguing class of compounds. However, they have been investigated far less than pure oxides. The compounds Sc5 P12 N23 O3 and Ti5 P12 N24 O2 have now been synthesized from the binary nitrides ScN and TiN, respectively, by following a high-pressure high-temperature approach at 8 GPa and 1400 °C. NH4 F acts as a mineralizing agent that supports product formation and crystallization. The starting materials ScN and TiN are seemingly an uncommon choice because of their chemical inertness but, nevertheless, react under these conditions. Sc5 P12 N23 O3 and Ti5 P12 N24 O2 crystallize isotypically with Ti5 B12 O26 , consisting of solely vertex-sharing P(O/N)4 tetrahedra forming two independent interpenetrating diamond-like nets that host TM(O/N)6 (TM=Sc, Ti) octahedra. Ti5 P12 N24 O2 is a mixed-valence compound and shows ordering of Ti3+ and Ti4+ ions.
Collapse
Affiliation(s)
- Lucien Eisenburger
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MunichGermany
| | - Valentin Weippert
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MunichGermany
| | - Oliver Oeckler
- Institute for Mineralogy, Crystallography and Materials ScienceLeipzig UniversityScharnhorststraße 2004275LeipzigGermany
| | - Wolfgang Schnick
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MunichGermany
| |
Collapse
|
5
|
Debbichi M, Alresheedi F. First-principles calculations of mechanical, electronic and optical properties of a new imidooxonitridophosphate. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wendl S, Schnick W. SrH 4 P 6 N 12 and SrP 8 N 14 : Insights into the Condensation Mechanism of Nitridophosphates under High Pressure. Chemistry 2018; 24:15889-15896. [PMID: 30136742 DOI: 10.1002/chem.201803125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 11/09/2022]
Abstract
The (imido)nitridophosphates SrH4 P6 N12 and SrP8 N14 were synthesized as colorless crystals by high-pressure/high-temperature reactions using the multianvil technique (5 GPa, ca. 1075 °C). Stoichiometric amounts of Sr(N3 )2, P3 N5 , and amorphous HPN2 were used as starting materials. Whereas the crystal structure of SrH4 P6 N12 was solved and refined from single-crystal X-ray diffraction data and confirmed by Rietveld refinement, the structure of SrP8 N14 was determined from powder diffraction data. In order to confirm the structures, 1 H and 31 P solid-state NMR spectroscopy and FTIR spectroscopy were carried out. The chemical composition was confirmed with EDX measurements. Both compounds show unprecedented layered network structure types, built up from all-side vertex-sharing PN4 tetrahedra which are structurally related. The structural comparison of both compounds gives first insights into the hitherto unknown condensation mechanism of nitridophosphates under high pressure.
Collapse
Affiliation(s)
- Sebastian Wendl
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377, München, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
7
|
Vogel S, Schnick W. SrP 3 N 5 NH: A Framework-Type Imidonitridophosphate Featuring Structure-Directing Hydrogen Bonds. Chemistry 2018; 24:14275-14281. [PMID: 30004596 DOI: 10.1002/chem.201803210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/12/2018] [Indexed: 11/09/2022]
Abstract
Nitridophosphates and imidonitridophosphates show intriguing structural diversity, including unprecedented structure types. Highly condensed strontium imidonitridophosphate SrP3 N5 NH has been synthesized at 8 GPa and 1100 °C using a high-pressure high-temperature approach starting from stoichiometric amounts of Sr(N3 )2 , P3 N5 and NH4 Cl. Herein, NH4 Cl was used as a hydrogen source and as a precursor for in situ formation of SrCl2 , which acts as mineralizer and facilitates growth of single-crystals with a diameter of ≤30 μm. SrP3 N5 NH (P21 /c (no. 14), a=5.01774(2), b=8.16912(4), c=12.70193(5) Å, β=101.7848(3)°, Z=4) adopts an unprecedented network structure, represented by the point symbol (3.4.5.6.72 )(3.4.5.72 .8)(3.6.73 .8). This unique three nodal P/N(H) network is stabilized by moderately strong hydrogen bonds causing a structure-directing effect, which has not yet been reported for imidonitridophosphates.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Chemistry, University of Munich (LMU), Butendandtstrasse 5-13, 81377, Munich, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butendandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|