1
|
Nazarova A, Padnya P, Khannanov A, Khabibrakhmanova A, Zelenikhin P, Stoikov I. Towards Protection of Nucleic Acids from Herbicide Attack: Self-Assembly of Betaines Based on Pillar[5]arene with Glyphosate and DNA. Int J Mol Sci 2023; 24:ijms24098357. [PMID: 37176066 PMCID: PMC10179701 DOI: 10.3390/ijms24098357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Herbicides are one of the main parts of pesticides used today. Due to the high efficiency and widespread use of glyphosate-based herbicides, the search for substances reducing their genotoxicity is an important interdisciplinary task. One possible approach for solving the problem of herbicide toxicity is to use compounds that can protect DNA from damage by glyphosate derivatives. For the first time, a method for developing DNA-protecting measures against glyphosate isopropylamine salt (GIS) damage was presented and realized, based on low-toxicity water-soluble pillar[5]arene derivatives. Two- and three-component systems based on pillar[5]arene derivatives, GIS, and model DNA from salmon sperm, as well as their cytotoxicity, were studied. The synthesized pillar[5]arene derivatives do not interact with GIS, while GIS is able to bind DNA from salmon sperm with lgKa = 4.92. The pillar[5]arene betaine derivative containing fragments of L-phenylalanine and the ester derivative with diglycine fragments bind DNA with lgKa = 5.24 and lgKa = 4.88, respectively. The study of the associates (pillar[5]arene-DNA) with GIS showed that the interaction of GIS with DNA is inhibited only by the betaine pillar[5]arene containing fragments of L-Phe (lgKa = 3.60). This study has shown a possible application of betaine pillar[5]arene derivatives for nucleic acid protection according to its competitive binding with biomacromolecules.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Aleksandra Khabibrakhmanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
- Federal Center for Toxicological, Radiation, and Biological Safety, Nauchny Gorodok-2, 420075 Kazan, Russia
| |
Collapse
|
2
|
Tang ZD, Sun XM, Huang TT, Liu J, Shi B, Yao H, Zhang YM, Wei TB, Lin Q. Pillar[n]arenes-based materials for detection and separation of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Abstract
Different from polymers or peptides (lacking metals), metal–organic cycles (MOCs) have properties which arise from the combination of metals and common nonmetal elements and topologies. The development of MOC supramolecular materials is in its infancy, and how the coordination bonds work to make the corresponding suprastructures is unknown. This has limited the potential application of these MOC-based materials. Considering the applications of individual MOCs, the study and discovery of the unique factors in MOC-involved multilevel self-assembly are critical to further our knowledge of the underlying molecular mechanisms of metal-containing compounds. Here, a systematic study of MOC assembly in various solvent systems has confirmed the critical role of coordination linkers in tuning the shape and size of the MOC-derived suprastructures. It is well known that chemical compositions and structural arrangements of materials have a great influence on their resultant properties. Diverse functional materials have been constructed by using either biomolecules (peptides, DNA, and RNA) in nature or artificially synthesized molecules (polymers and pillararenes). The relationships between traditional building blocks (such as peptides) have been widely investigated, for example how hydrogen bonds work in the peptide multistage assembly process. However, in contrast to traditional covalent bond-based building blocks-based assembly, suprastructures formed by noncovalent bonds are more influenced by specific bond features, but to date only a few results have been reported based on noncovalent bond-based building block multistage assembly. Here, three metal–organic cycles (MOCs) were used to show how coordination bonds influence the bimetallacycle conformation then lead to the topology differences of MOC multilevel ordered materials. It was found that the coordination linker (isophthalate-Pt-pyridine) is an important factor to tune the shape and size of the MOC-derived suprastructures.
Collapse
|
4
|
Sun Y, Stang PJ. Assembly of metallacages into diverse suprastructures. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Liao P, Feng X, Fang H, Yang Z, Zhang J. Stabilized nanotube and nanofiber gel materials toward multifunctional adsorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Li D, Han Y, Sun J, Liu WL, Yan CG. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Liu L, Hu Y, Huang S, Jin Y, Cui J, Gong W, Zhang W. A pillar[5]arene-based covalent organic framework with pre-encoded selective host-guest recognition. Chem Sci 2021; 12:13316-13320. [PMID: 34777750 PMCID: PMC8528016 DOI: 10.1039/d1sc03680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 01/27/2023] Open
Abstract
It is highly desirable to maintain both permanent accessible pores and selective molecular recognition capability of macrocyclic cavitands in the solid state. Integration of well-defined discrete macrocyclic hosts into ordered porous polymeric frameworks (e.g., covalent organic frameworks, COFs) represents a promising strategy to transform many supramolecular chemistry concepts and principles well established in the solution phase into the solid state, which can enable a broad range of practical applications, such as high-efficiency molecular separation, heterogeneous catalysis, and pollution remediation. However, it is still a challenging task to construct macrocycle-embedded COFs. In this work, a novel pillar[5]arene-derived (P5) hetero-porous COF, denoted as P5-COF, was rationally designed and synthesized. Featuring the unique backbone structure, P5-COF exhibited selective adsorption of C2H2 over C2H4 and C2H6, as well as significantly enhanced host-guest binding interaction with paraquat, in comparison with the pillar[5]arene-free COF analog, Model-COF. The present work established a new strategy for developing COFs with customizable molecular recognition/separation properties through the bottom-up "pre-porous macrocycle to porous framework" design.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology Dalian Liaoning Province 116024 P. R. China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| |
Collapse
|
8
|
|
9
|
Sheng X, Li E, Huang F. Construction of pillar[4]arene[1]quinone-1,10-dibromodecane pseudorotaxanes in solution and in the solid state. Beilstein J Org Chem 2020; 16:2954-2959. [PMID: 33335603 PMCID: PMC7722622 DOI: 10.3762/bjoc.16.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
We report novel pseudorotaxanes based on the complexation between pillar[4]arene[1]quinone and 1,10-dibromodecane. The complexation is found to have a 1:1 host–guest complexation stoichiometry in chloroform but a 2:1 host–guest complexation stoichiometry in the solid state. From single crystal X-ray diffraction, the linear guest molecules thread into cyclic pillar[4]arene[1]quinone host molecules in the solid state, stabilized by CH∙∙∙π interactions and hydrogen bonds. The bromine atoms at the periphery of the guest molecule provide convenience for the further capping of the pseudorotaxanes to construct rotaxanes.
Collapse
Affiliation(s)
- Xinru Sheng
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Li L, Tuo W, Zhu Q, Sepehrpour H, Yao Y, Yan C, Liu L, Li D, Xie Y, Zhang C, Wang M, Sun Y. Resorcinarene Induced Assembly of Carotene and Lutein into Hierarchical Superstructures. J Am Chem Soc 2020; 142:20583-20587. [DOI: 10.1021/jacs.0c10901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wei Tuo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Qihua Zhu
- Department of Medicinal Chemistry, Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Lizhe Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Dan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Yajing Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
11
|
Sun Y, Chen C, Wang X, Zhang F, Lu S, Li X, Suo X, Lin Z. Self-Assembly of Metallacages into Centimeter Films with Tunable Size and Emissions. J Am Chem Soc 2020; 142:17933-17937. [DOI: 10.1021/jacs.0c09781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chongyi Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital and Ruijin North Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Fengmin Zhang
- Testing Center of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaocen Suo
- Testing Center of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Zixia Lin
- Testing Center of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
12
|
Zhu H, Li Q, Shi B, Xing H, Sun Y, Lu S, Shangguan L, Li X, Huang F, Stang PJ. Formation of Planar Chiral Platinum Triangles via Pillar[5]arene for Circularly Polarized Luminescence. J Am Chem Soc 2020; 142:17340-17345. [DOI: 10.1021/jacs.0c09598] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hao Xing
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Synthesis and characterization of bis-[1]rotaxanes via salen-bridged bis-pillar[5]arenes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Zhao LL, Han Y, Yan CG. Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Peterson A, Ludvig ML, Martõnova J, Kaabel S, Kerner P, Uudsemaa M, Trummal A, Fomitšenko M, Pehk T, Aav R, Adamson J. New oxacalix[4]arene carboxylate detects viologen in protic media. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1659269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anna Peterson
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Mari-Liis Ludvig
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jevgenija Martõnova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sandra Kaabel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Paul Kerner
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Merle Uudsemaa
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksander Trummal
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Maria Fomitšenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Pehk
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jasper Adamson
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
16
|
Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Sun S, Lu D, Huang Q, Liu Q, Yao Y, Shi Y. Reversible surface activity and self-assembly behavior and transformation of amphiphilic ionic liquids in water induced by a pillar[5]arene-based host-guest interaction. J Colloid Interface Sci 2019; 533:42-46. [DOI: 10.1016/j.jcis.2018.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
|
18
|
The synthesis of water-soluble phosphate pillar[5]arenes functionalized graphene as a fluorescent probe for sensitive detection of paraquat. Talanta 2018; 195:472-479. [PMID: 30625572 DOI: 10.1016/j.talanta.2018.11.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023]
Abstract
We describe a selective and sensitive fluorescence platform for the detection of paraquat (PQ) based on competitive host-guest recognition between phosphate pillar[5]arenes (PWP5) and probe (Safranine T, ST) with using PWP5 functionalized reduced graphene (PWP5-rGO) as the receptor. PQ is a positive charge molecule that is captured by PWP5 via electrostatic interactions. The host-guest interaction between PWP5 and PQ is studied by 1H NMR. Therefore, a selective and sensitive fluorescence sensing of detection PQ is developed. It has a linear response ranges of 0.01-2.0 and 2.0-50.0 μM and a low detection limit of 0.0035 μM (S/N = 3) for PQ. The sensing platform is also used to test PQ in two water samples with satisfying results. It suggests that this approach has potential applications for the determination of PQ.
Collapse
|
19
|
Yao Y, Wei X, Cai Y, Kong X, Chen J, Wu J, Shi Y. Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. J Colloid Interface Sci 2018; 525:48-53. [DOI: 10.1016/j.jcis.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
20
|
Abstract
Pillararenes are a unique group of supramolecular macrocycles, presenting important features and potential applications on account of their intrinsic structural properties and functionality. Developing pillararene-based self-assembled amphiphiles (PSAs) is an efficient approach to translate pillararenes into functional systems and materials for facilitating their practical applications. In this review article, we highlight recent significant advancements in PSAs. A new standard according to the number, solubility, and amphiphilicity of building blocks is employed for dividing PSAs into different categories. The fabrication of PSAs based on various building blocks and supramolecular interactions, and the formation of amphiphile-based self-assemblies are then discussed based on this standard. Furthermore, interesting stimulus-responsiveness to various factors, such as pH, redox, temperature, light, ionic effect, and host-guest competition, generated by the functional groups on various building blocks is summarized, and the corresponding supramolecular interactions in PSAs and their self-assemblies are elaborated. In addition, some important applications of PSAs and their assemblies are discussed. This review not only provides fundamental findings on the construction of PSAs, but also foresees future research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | | | | |
Collapse
|
21
|
Han Y, Xu LM, Nie CY, Jiang S, Sun J, Yan CG. Synthesis of diamido-bridged bis-pillar[5]arenes and tris-pillar[5]arenes for construction of unique [1]rotaxanes and bis-[1]rotaxanes. Beilstein J Org Chem 2018; 14:1660-1667. [PMID: 30013692 PMCID: PMC6036973 DOI: 10.3762/bjoc.14.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
The pillar[5]arene mono- and di(oxyalkoxy)benzoic acids were successfully prepared in high yields by sequential alkylation of ω-bromoalkoxy-substituted pillar[5]arenes with methyl or ethyl p-hydroxybenzoate followed by a hydrolytic reaction under basic conditions. Under catalysis of HOBt/EDCl, the amidation reaction of pillar[5]arene mono(oxybutoxy)benzoic acid with monoamido-functionalized pillar[5]arenes afforded diamido-bridged bis-pillar[5]arenes. 1H NMR and 2D NOESY spectra clearly indicated that [1]rotaxanes were formed by insertion of longer diaminoalkylene unit into the cavity of one pillar[5]arene with another pillar[5]arene acting as a stopper. The similar catalysed amidation reaction of pillar[5]arene di(oxybutoxy)benzoic acid with monoamido-functionalized pillar[5]arenes resulted in the diamido-bridged tris-pillar[5]arenes, which successfully form the unique bis-[1]rotaxanes bearing longer than diaminopropylene diamido bridges.
Collapse
Affiliation(s)
- Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Li-Ming Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Cui-Yun Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Shuo Jiang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
22
|
Jiang S, Han Y, Cheng M, Sun J, Yan CG, Jiang J, Wang L. Self-locked dipillar[5]arene-based pseudo[1]rotaxanes and bispseudo[1]rotaxanes with different lengths of bridging chains. NEW J CHEM 2018. [DOI: 10.1039/c7nj05192a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationships between lengths of bridging chains and self-locked behaviors of dipillar[5]arene-based pseudo[1]rotaxanes and bispseudo[1]rotaxanes were studied in detail.
Collapse
Affiliation(s)
- Shuo Jiang
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Ying Han
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Ming Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Juli Jiang
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
23
|
Affiliation(s)
- Fang Guo
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Bohan Xi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Jiang S, Han Y, Sun J, Yan CG. Construction and single crystal structures of pseudo[1]rotaxanes based on pillar[5]arene mono-pyridylimine derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Chen JF, Han BB, Ma JF, Liu X, Yang QY, Lin Q, Yao H, Zhang YM, Wei TB. Pillar[5]arene-based fluorescent polymer for selective detection and removal of mercury ions. RSC Adv 2017. [DOI: 10.1039/c7ra10326c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel pillar[5]arene-based fluorescent polymer has been synthesized, and it is used for fluorescence detection and removal of the toxic mercury ions.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Feng Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xi Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qing-Yu Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|