1
|
Tanaka K, Hashimoto Y, Morita N, Tamura O. Directing-Group-Free Palladium-Catalyzed C–H Arylation of Aldoxime Using Oxime’s Umpolung Properties. Org Lett 2022; 24:8954-8958. [DOI: 10.1021/acs.orglett.2c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kosaku Tanaka
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
2
|
Yamada T, Hashimoto Y, Tanaka K, Morita N, Tamura O. Cationic palladium(ii)-catalyzed synthesis of substituted pyridines from α,β-unsaturated oxime ethers. RSC Adv 2022; 12:21548-21557. [PMID: 36043185 PMCID: PMC9351437 DOI: 10.1039/d2ra03875g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient method for the synthesis of multi-substituted pyridines from β-aryl-substituted α,β-unsaturated oxime ethers and alkenes via Pd-catalyzed C–H activation has been developed. The method, using Pd(OAc)2 and a sterically hindered pyridine ligand, provides access to various multi-substituted pyridines with complete regioselectivity. Mechanistic studies suggest that the pyridine products are formed by Pd-catalyzed electrophilic C–H alkenylation of α,β-unsaturated oxime followed by aza-6π-electrocyclization. The utility of this method is showcased by the synthesis of 4-aryl-substituted pyridine derivatives, which are difficult to synthesize efficiently using previously reported Rh-catalyzed strategies with alkenes. An efficient method for the synthesis of multi-substituted pyridines from α,β-unsaturated oxime ethers via cationic Pd(ii)-catalyzed C–H activation has been developed.![]()
Collapse
Affiliation(s)
- Takahiro Yamada
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| | | | - Kosaku Tanaka
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| | | | - Osamu Tamura
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| |
Collapse
|
3
|
Fernandes R, Mhaske K, Balhara R, Jindal G, Narayan R. Copper-Catalyzed Aerobic Cross-Dehydrogenative Coupling of β-Oxime Ether Furan with Indole. Chem Asian J 2022; 17:e202101369. [PMID: 35146932 DOI: 10.1002/asia.202101369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Heterobiaryls serve as relevant structural motifs in many fields of high applicative importance such as drugs, agrochemicals, organic functional materials etc. Cross-dehydrogenative coupling involving direct oxidation of two C-H bonds to construct a C-C bond is actively being pursued as a more benign and 'greener' alternative for synthesizing heterobiaryls. Herein, we report a Cu(I)-catalyzed cross-dehydrogenative coupling of indoles and furans, two of the most important aromatic heterocycles using air as the terminal oxidant. The reaction proceeds with regio- and chemoselectivity to give the cross-coupled products in good to excellent yields generally. A broad substrate scope with respect to both the coupling partners has been demonstrated to prove the generality of this reaction. This represents the hitherto unexplored cross-dehydrogenative coupling methodology to obtain an indole-furan biaryl motif.
Collapse
Affiliation(s)
- Rushil Fernandes
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| |
Collapse
|
4
|
Furugoori M, Yoshida K, Hashimoto Y, Morita N, Tanaka Iii K, Tamura O. Electrophilic Epoxidation of α,β-Unsaturated Oximes with Dioxiranes and Ring Opening of the Epoxides. Chem Pharm Bull (Tokyo) 2021; 69:1010-1016. [PMID: 34305073 DOI: 10.1248/cpb.c21-00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α,β-Unsaturated oximes underwent electrophilic epoxidation with in-situ-generated dimethyldioxirane to give the corresponding epoxides in good yields. This reaction is an example of "carbonyl umpolung" by transformation of α,β-unsaturated ketones to their oximes. Nucleophilic ring-opening reactions of the epoxides afforded α-substituted products. Shi asymmetric epoxidation of the oximes proceeded with moderate enantioselectivity.
Collapse
|
5
|
Thakur S, Das A, Das T. 1,3-Dipolar cycloaddition of nitrones: synthesis of multisubstituted, diverse range of heterocyclic compounds. NEW J CHEM 2021. [DOI: 10.1039/d1nj02023d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 1,3-dipolar cycloaddition reaction of nitrone is one of the most important methods for the synthesis of different sizes of heterocycles which have enormous applications in natural products, biologically active molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Seema Thakur
- Department of Chemistry
- NIT Jamshedpur
- Jamshedpur 831014
- India
| | - Arunima Das
- Department of Chemistry
- NIT Jamshedpur
- Jamshedpur 831014
- India
| | - Tapas Das
- Department of Chemistry
- NIT Jamshedpur
- Jamshedpur 831014
- India
| |
Collapse
|
6
|
Yamada T, Hashimoto Y, Tanaka K, Morita N, Tamura O. Thioether Ligand-Enabled Cationic Palladium(II)-Catalyzed Electrophilic C-H Arylation of α,β-Unsaturated Oxime Ethers. J Org Chem 2020; 85:12315-12328. [PMID: 32844650 DOI: 10.1021/acs.joc.0c01570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of the cationic palladium(II) catalyst realized electrophilic C-H arylation of α,β-unsaturated O-SEM oximes with arylboronic acids. This Pd-catalyzed electrophilic C-H arylation is facilitated by employing alkyl aryl thioether ligands, and optimization of the ligand structure greatly improves the yield. The resulting α,β-unsaturated oximes would provide access to multisubstituted heterocyclic compounds.
Collapse
Affiliation(s)
- Takahiro Yamada
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | - Kosaku Tanaka
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | - Osamu Tamura
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
7
|
Akagi Y, Fukuyama S, Komatsu T. Palladium-Catalyzed β-Arylation of Cyclic α,β-Unsaturated O-Methyl Oximes with Aryl Iodides. Chem Pharm Bull (Tokyo) 2020; 68:288-291. [PMID: 32115536 DOI: 10.1248/cpb.c19-01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a Pd-catalyzed β-arylation of cyclic α,β-unsaturated O-methyl oximes with aryl iodides. This reaction shows complete regioselectivity and excellent functional group tolerance. β-Arylation of 2-cyclohexen-1-one O-methyl oxime (existing as 2 : 1 E/Z mixture) with certain aryl iodides such as 4-iodoanisole affords only β-arylated (E)-O-methyl oximes.
Collapse
Affiliation(s)
- Yusuke Akagi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University
| | - Shiori Fukuyama
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University
| | - Toshiya Komatsu
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University
| |
Collapse
|
8
|
Soleymani M, Kazemi Chegeni Z. A molecular electron density theory study on the [3+2] cycloaddition reaction of 5,5-dimethyl-1-pyrroline N-oxide with 2-cyclopentenone. J Mol Graph Model 2019; 92:256-266. [PMID: 31422198 DOI: 10.1016/j.jmgm.2019.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
In the present work, the [3 + 2] cycloaddition reaction of 5,5-dimethyl-1-pyrroline N-oxide (Nit-5) and 2-cyclopentenone (CPN-6), experimentally reported by Tamura et al., was theoretically studied using the newly introduced molecular electron density theory (MEDT). Based on the experimental findings, this reaction takes place in an O3-C4 regio- and an exo-stereospecific fashion to give corresponding [3 + 2] exo cycloadduct as the sole product. The results of the potential energy surface analysis indicated that the experimentally reported product is more favorable both thermodynamically and kinetically relative to other possible adducts. In complete agreement with the experimental outcomes, the conceptual density functional theory reactivity indices explained the reactivity and regioselectivity of the reaction. Calculation of global electron density transfer of the energetically most preferred transition state indicated that the electron density fluxes from Nit-5 as a nucleophilic species toward CPN-6 as an electrophilic species. Analysis of the molecular electrostatic potential map of the most favorable transition state showed that approach of Nit-5 and CPN-6 locates the oppositely charged regions over each other leading to attractive forces between two reagents rationalizing the exo stereoselectivity predominance. The molecular mechanism of the reactions was specified using electron localization function analysis over some relevant points along the intrinsic reaction coordinate profile of the most favorable transition state and the results indicated that this zwitterionic-type [3 + 2] cycloaddition reaction proceeds through a two-stage one-step mechanism. In fact, while the O3-C4 single bond is initialy formed between two fragments through donation of some electron density from the O3 oxygen lone electron-pairs of Nit-5 toward the C4 carbon atom of CPN-6, the delayed C1-C5 single bond begins to form via C1- to -C5 coupling of pseudodiracal centers created on theses atoms over the course of reaction.
Collapse
Affiliation(s)
- Mousa Soleymani
- Chemistry Department, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
| | - Zeinab Kazemi Chegeni
- Chemistry Department, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, Iran
| |
Collapse
|
9
|
Hashimoto Y, Ikeda T, Ida A, Morita N, Tamura O. Inverse-Electron-Demand oxa-Diels-Alder Reactions of α-Keto-β,γ-unsaturated Esters and α,β-Unsaturated Hydrazones. Org Lett 2019; 21:4245-4249. [PMID: 31140822 DOI: 10.1021/acs.orglett.9b01422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise synthetic method for dihydropyrans has been developed by inverse-electron-demand oxa-Diels-Alder reaction of α-keto-β,γ-unsaturated esters with α,β-unsaturated hydrazones as electron-rich olefins. This reaction is catalyzed by Eu(hfc)3 and proceeds in an endo-selective manner. This umpolung cycloaddition affords a variety of substituted dihydropyrans stereoselectively in high yields. In addition, indirect synthesis of formyl-substituted dihydropyran was achieved by dehydrazonation of the cycloadduct. This method is expected to be useful for the synthesis of dihydropyrans and tetrahydropyrans with unusual substitution patterns.
Collapse
Affiliation(s)
| | - Takanori Ikeda
- Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Ayako Ida
- Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Osamu Tamura
- Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| |
Collapse
|
10
|
Abstract
A series of novel Au(i)-nitrone complexes with specific catalytic properties were prepared. Furthermore, Au(i)- and Au(iii)-oxadiazole complexes were formed by a novel Au-generated nitrile-nitrone [3 + 2] cycloaddition, and the crystal structures of Au(i)-nitrones as well as the Au(i)- and Au(iii)-oxadiazole complexes were studied (X-ray). A useful one-pot Au(iii)-mediated cycloaddition method was developed for the formation of a number of dihydro-1,2,4-oxadiazoles, involving in situ formation of Au(iii)-oxadiazole complexes. The observed Au(i) and Au(iii) dual selective reactivity gives new understanding about the Au(i)- and Au(iii)-nitrone chemistry.
Collapse
Affiliation(s)
- Helgi Freyr Jónsson
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | |
Collapse
|
11
|
Hashimoto Y, Abe R, Morita N, Tamura O. Inverse-electron-demand Diels-Alder reactions of α,β-unsaturated hydrazones with 3-methoxycarbonyl α-pyrones. Org Biomol Chem 2018; 16:8913-8916. [PMID: 30422144 DOI: 10.1039/c8ob02132e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inverse-electron-demand Diels-Alder reactions of 3-electron-withdrawing group substituted α-pyrones with α,β-unsaturated hydrazones as electron-rich counterparts are catalyzed by Eu(hfc)3 to afford bicyclic lactone cycloadducts. This is an example of umpolung cycloaddition based on functional transformation of carbonyls to hydrazones. A subsequent dehydrazonation reaction enables indirect synthesis of carbonyl group-containing bicyclic lactones, which cannot be easily obtained by the cycloaddition of α-pyrones and enals.
Collapse
|
12
|
Tanimoto H, Ueda S, Morimoto T, Kakiuchi K. Nitrosoallene-Mediated endo-Cyclizations for the Synthesis of (Hetero)cyclic α-Substituted exo-Unsaturated Oximes. J Org Chem 2018; 83:1614-1626. [DOI: 10.1021/acs.joc.7b02936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Tanimoto
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Sho Ueda
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
13
|
Hirai T, Shibata K, Niwano Y, Shiozaki M, Hashimoto Y, Morita N, Ban S, Tamura O. Total Synthesis of Neodysiherbaine A via 1,3-Dipolar Cycloaddition of a Chiral Nitrone Template. Org Lett 2017; 19:6320-6323. [PMID: 29155598 DOI: 10.1021/acs.orglett.7b03092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of neodysiherbaine A was achieved via 1,3-dipolar cycloaddition of a chiral nitrone template with a sugar-derived allyl alcohol in the presence of MgBr2·OEt2. This cycloaddition constructed the C2 and C4 asymmetric centers in a single step. Then reductive cleavage, intramolecular SN2 reaction of the tertiary alcohol, and oxidation of the primary alcohol afforded neodysiherbaine A.
Collapse
Affiliation(s)
- Toshihiro Hirai
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kohki Shibata
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yohei Niwano
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Masao Shiozaki
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shintaro Ban
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University , Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|