1
|
Zhang W, Chen S, Chen Z, Li Z, Zhou M, Ma Z. A review of chemical kinetic mechanisms and after-treatment of amino fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178220. [PMID: 39754946 DOI: 10.1016/j.scitotenv.2024.178220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines. The combination of ammonia with highly reactive fuels improves combustion quality and increases efficiency. However, the combustion of these combined fuels generates particulate matter, CO, hydrocarbon, and significant amounts of NOx. Therefore, pollutant emissions must be reduced through after-treatment technologies. In this paper, a series of combustion and post-treatment challenges faced by amino fuel combustion in internal combustion engines are extensively discussed and the combustion reaction mechanisms of different amino fuels are also analyzed. The paper then reviews five key technologies applicable to the reprocessing of amino fuels, including selective catalytic reduction, selective catalytic reduction filter technology, electrochemical methods for NOx removal, direct catalytic decomposition of N2O, and ammonia sliding catalysts. An in-depth discussion of the catalytic materials and reaction mechanisms involved in these technologies is also provided in this paper. Finally, the paper summarizes the main technical challenges that must be addressed for the future application of amino fuels in internal combustion engines. These discussions can serve as an essential reference for developing and applying critical technologies for combustion control and pollutant treatment of amino fuels.
Collapse
Affiliation(s)
- Wei Zhang
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuai Chen
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhaohui Chen
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zehong Li
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Mayi Zhou
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhenzhu Ma
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Li J, Chen K, Lin L, Han S, Meng F, Hu E, Qin W, Gao Y, Jiang J. Product Selection Toward High-Value Hydrogen and Bamboo-Shaped Carbon Nanotubes from Plastic Waste by Catalytic Microwave Processing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14675-14686. [PMID: 39102504 DOI: 10.1021/acs.est.4c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The escalating levels of plastic waste and energy crises underscore the urgent need for effective waste-to-energy strategies. This study focused on converting polypropylene wastes into high-value products employing various iron-based catalysts and microwave radiative thermal processing. The Al-Fe catalysts exhibited exceptional performance, achieving a hydrogen utilization efficiency of 97.65% and a yield of 44.07 mmol/g PP. The gas yields increased from 19.99 to 94.21 wt % compared to noncatalytic experiments. Furthermore, this catalytic system produced high-value bamboo-shaped carbon nanotubes that were absent in other catalysts. The mechanism analysis on catalytic properties and product yields highlighted the significance of oxygen vacancies in selecting high-value products through two adsorption pathways. Moreover, the investigation examined the variations in product distribution mechanisms between conventional and microwave pyrolysis, in which microwave conditions resulted in 4 times higher hydrogen yields. The technoeconomic assessment and Monte Carlo risk analysis further compared the disparity. The microwave technique had a remarkable internal rate of return (IRR) of 39%, leading to an income of $577/t of plastic with a short payback period of 2.5 years. This research offered sustainable solutions for the plastic crisis, validating the potential applicability of commercializing the research outcomes in real-world scenarios.
Collapse
Affiliation(s)
- Jinglin Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kailun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Endian Hu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weikai Qin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Xu J, Huang W, Li R, Li L, Ma J, Qi J, Ma H, Ruan M, Lu L. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. J Colloid Interface Sci 2024; 655:584-593. [PMID: 37956546 DOI: 10.1016/j.jcis.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
High-selectivity acetylene hydrogenation to produce ethylene is an important issue of removing acetylene impurity in ethylene for industrial polyethylene production. Developing high-efficiency catalyst with excellent ethylene selectivity and catalytic durability is desirable but still challenging. In this work, potassium doped palladium catalysts supported on zirconia with different K contents (Pd/ZrO2-xK) have been developed to catalyze acetylene hydrogenation, the Pd/ZrO2-16K exhibits impressive catalytic performance with acetylene conversion of 100 %, ethylene selectivity of 81 % and high catalytic durability. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) and density functional theory (DFT) calculations reveal that K doping effectively weakens the adsorption of ethylene by regulating the electronic state of catalyst to improve ethylene selectivity and substantially lowers the barriers of hydrogen activation and transfer reactions to favor hydrogen spillover, thus conferring a remarkably improved durability on the Pd/ZrO2-16K catalysts.
Collapse
Affiliation(s)
- Junjie Xu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China
| | - Weixiong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ruiling Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinjin Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaou Qi
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haiyan Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Min Ruan
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China.
| | - Lilin Lu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
4
|
On the Catalytic Mechanism of 3d and 4d Transition-Metal-Based Materials on the Hydrogen Sorption Properties of Mg/MgH2. Catalysts 2023. [DOI: 10.3390/catal13030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The slow hydrogenation/dehydrogenation kinetics and high thermodynamic stability of the Mg–H bond are the two major limitations for the large-scale utilization of MgH2. In this review, we introduce the catalytic mechanism of 3d and 4d transition metal (TM) on the hydrogen sorption properties of Mg/MgH2. The relative contribution of interatomic interactions to the thermodynamic stability of the TM-substituted MgH2 system is discussed. A synergy effect between the electronegativity and the radius of the TM element is proposed to explain the charge transfer process between TM and H in the TM-substituted MgH2 system. The catalytic mechanism of TM nearby the surface of Mg is more complicated than that in the volume of Mg, as the surface-doped TM can experience more options for doping sites, leading to the hindrance effect and causing various contributions of the d band center to the dissociation of hydrogen molecules and the diffusion of hydrogen atoms nearby the surface of Mg. In terms of the catalytic mechanism of TM for hydrogen sorption kinetics of Mg/MgH2, we particularly focused on the “hydrogen pump” effect existing in the Mg–TM–H system. Other mechanisms, such as a possible catalytic mechanism of TM for the hydrogen sorption properties of nano-sized freestanding Mg/MgH2, were also presented.
Collapse
|
5
|
Zhang T, Zhang Z, Luo D, Xie T, Zheng WT, Hu Z, Yang RT. Photothermal Synergism on Pd/TiO 2 Catalysts with Varied TiO 2 Crystalline Phases for NO x Removal via H 2-SCR: A Transient DRIFTS Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhenyu Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Decun Luo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tao Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wen-Tao Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
6
|
Vikanova KV, Redina EA, Kustov LM. Hydrogen spillover on cerium-based catalysts. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Shun K, Mori K, Masuda S, Hashimoto N, Hinuma Y, Kobayashi H, Yamashita H. Revealing hydrogen spillover pathways in reducible metal oxides. Chem Sci 2022; 13:8137-8147. [PMID: 35919430 PMCID: PMC9278487 DOI: 10.1039/d2sc00871h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen spillover, the migration of dissociated hydrogen atoms from noble metals to their support materials, is a ubiquitous phenomenon and is widely utilized in heterogeneous catalysis and hydrogen storage materials. However, in-depth understanding of the migration of spilled hydrogen over different types of supports is still lacking. Herein, hydrogen spillover in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was elucidated by combining systematic characterization methods involving various in situ techniques, kinetic analysis, and density functional theory calculations. TiO2 and CeO2 were proven to be promising platforms for the synthesis of non-equilibrium RuNi binary solid solution alloy nanoparticles displaying a synergistic promotional effect in the hydrolysis of ammonia borane. Such behaviour was driven by the simultaneous reduction of both metal cations under a H2 atmosphere over TiO2 and CeO2, in which hydrogen spillover favorably occurred over their surfaces rather than within their bulk phases. Conversely, hydrogen atoms were found to preferentially migrate within the bulk prior to the surface over WO3. Thus, the reductions of both metal cations occurred individually on WO3, which resulted in the formation of segregated NPs with no activity enhancement. The hydrogen spillover pathway in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was investigated by combining various in situ characterization techniques, kinetic analysis, and density functional theory calculations.![]()
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Masuda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Hashimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hisayoshi Kobayashi
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Zhao J, Zhang Y, Zhang H, Wang H, Wang J. H-spilled storage to maximize the catalytic performances of Pd-based bimetals@Ti3C2Tx MXene in selective semihydrogenations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen spillover is an important theme for hydrogen storage and H-involving catalytic reactions. This work shows that catalytic reactivity and selectivity can be revealed by differentiating energetic characteristics of the...
Collapse
|
9
|
Ma L, Ma C, Xie T, Cao L, Yang J. SO 2 Resisting Pd-doped Pr 1-x Ce x MnO 3 Perovskites for Efficient Denitration at Low Temperature. Chem Asian J 2021; 16:530-537. [PMID: 33450118 DOI: 10.1002/asia.202001426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Indexed: 11/10/2022]
Abstract
H2 -SCR is served as the promising technology for the controlling of NOx emission, and the Pd-based derivative catalyst exhibited high NOx reduction performance. Effectively regulating the electronic configuration of the active component is favorable to the rational optimization of noble Pd. In this work, a series of Pr1-x Cex Mn1-y Pdy O3 @Ni were successfully synthesized and exhibited superior NO conversion efficiency at low temperatures. 92.7 % conversion efficiency was achieved at 200 °C over Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 @Ni in the presence of 4 % O2 with a GHSV of 32000 h-1 . Meanwhile, the outstanding performance was obtained in the resistance to SO2 (200 ppm) and H2 O (8 %). Deduced from the results of XRD, Raman, XPS, and H2 -TPR, the modification of d orbit states in palladium was confirmed originating from the incorporation in the B site of Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 . The existence of higher valence (Pd3+ and Pd4+ ) than the bivalence in Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 catalyst was evidenced by XPS analysis. Our research provides a new sight into the H2 -SCR through the higher utilization of Pd.
Collapse
Affiliation(s)
- Linghui Ma
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chenglong Ma
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Tianying Xie
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Limei Cao
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ji Yang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| |
Collapse
|
10
|
Borchers M, Keller K, Lott P, Deutschmann O. Selective Catalytic Reduction of NO x with H 2 for Cleaning Exhausts of Hydrogen Engines: Impact of H 2O, O 2, and NO/H 2 Ratio. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Borchers
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Kevin Keller
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Patrick Lott
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Olaf Deutschmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| |
Collapse
|
11
|
Rajbala, Bhatia D. Crystallite-scale model for NOx reduction by hydrogen spillover on SBA-15 and MCM-41. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Wang Y, You J, Cheng Z, Jiang K, Zhang L, Cai W, Liu YQ, Li S. A promising Al-CeZrO4/HPW-incorporated SPEEK composite membrane with improved proton conductivity and chemical stability for PEM fuel cells. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320957076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An improved sulfonated poly (ether ether ketone) (SPEEK) nanocomposite membrane was prepared by incorporating both phosphotungstic acid (HPW) and Al doped cerium-based oxides (Al-CeZrO4) in SPEEK matrix. The HPW was immobilized by Al-CeZrO4 so that firmly dispersed acid–base pairs were formed. The introduction of Al-CeZrO4 helped improve the chemical stability of the pristine (baseline) SPEEK membrane without compromising the conductivity, and the addition of HPW further enhanced the conduction of protons through acid–base interactions. Stability tests showed that when the SPEEK/Al-CeZrO4 nanocomposite membrane was immersed in a Fenton’s solution for 108 h at 80°C, a loss of 34.9% in proton conductivity was observed, which is 24.1% less than that of the pristine SPEEK membrane, indicating that the attenuation of membrane proton conductivity was inhibited. At the same time, the proton conductivity of the SPEEK/Al-CeZrO4/HPW nanocomposite membrane (that has already incorporated HPW) was increased by 15.5% compared to the SPEEK/Al-CeZrO4 nanocomposite membrane. Hence, Al-CeZrO4/HPW is considered as an effective inorganic nanofiller for improving both proton conductivity and chemical stability of SPEEK membranes, and the hybrid composite membrane is worth further studying.
Collapse
Affiliation(s)
- Yingfeng Wang
- College of Energy, iChEM, Xiamen University, Xiamen, China
| | - Jiabin You
- College of Energy, iChEM, Xiamen University, Xiamen, China
| | - Zhuowei Cheng
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, China
| | - Kun Jiang
- College of Energy, iChEM, Xiamen University, Xiamen, China
| | - Linlin Zhang
- College of Energy, iChEM, Xiamen University, Xiamen, China
| | - Wanli Cai
- College of Energy, iChEM, Xiamen University, Xiamen, China
| | - Yun-Quan Liu
- College of Energy, iChEM, Xiamen University, Xiamen, China
| | - Shuirong Li
- College of Energy, iChEM, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Hu Z, Yong X, Li D, Yang RT. Synergism between palladium and nickel on Pd-Ni/TiO2 for H2-SCR: A transient DRIFTS study. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Liu J, Zhao Z, Xu C, Liu J. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63400-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Sheng L, Ma Z, Chen S, Lou J, Li C, Li S, Zhang Z, Wang Y, Yang H. Mechanistic insight into N2O formation during NO reduction by NH3 over Pd/CeO2 catalyst in the absence of O2. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63328-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Hu Z, Yang RT. 110th Anniversary: Recent Progress and Future Challenges in Selective Catalytic Reduction of NO by H2 in the Presence of O2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01843] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
17
|
Yin X, Liang L, Zhao P, Lan F, Zhang L, Ge S, Yu J. Double signal amplification based on palladium nanoclusters and nucleic acid cycles on a μPAD for dual-model detection of microRNAs. J Mater Chem B 2018; 6:5795-5801. [DOI: 10.1039/c8tb01552j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-model signal outputs and double signal amplification on the platform of μPAD for the sensitive detection of miRNAs.
Collapse
Affiliation(s)
- Xuemei Yin
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Linlin Liang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
- Institute for Advanced Interdisciplinary Research
| | - Peini Zhao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Feifei Lan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|