1
|
Valenta H, Bierbuesse F, Vitale R, Ruckebusch C, Vandenberg W, Dedecker P. Per-pixel unmixing of spectrally overlapping fluorophores using intra-exposure excitation modulation. Talanta 2024; 269:125397. [PMID: 38048682 DOI: 10.1016/j.talanta.2023.125397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
Multilabel fluorescence imaging is essential for the visualization of complex systems, though a major challenge is the limited width of the useable spectral window. Here, we present a new method, exNEEMO, that enables per-pixel quantification of spectrally-overlapping fluorophores based on their light-induced dynamics, in a way that is compatible with a very broad range of timescales over which these dynamics may occur. Our approach makes use of intra-exposure modulation of the excitation light to distinguish the different emitters given their reference responses to this modulation. We use the approach to simultaneously image four green photochromic fluorescent proteins at the full spatial resolution of the imaging.
Collapse
|
2
|
Bourges AC, Moeyaert B, Bui TYH, Bierbuesse F, Vandenberg W, Dedecker P. Quantitative determination of the full switching cycle of photochromic fluorescent proteins. Chem Commun (Camb) 2023. [PMID: 37377004 DOI: 10.1039/d3cc01617j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study, we develop a general analytical model of the photochromism of fluorescent proteins and apply it to spectroscopic measurements performed on six different labels. Our approach provides quantitative explanations for phenomena such as the existence of positive and negative switching, limitations in the photochromism contrast, and the fact that initial switching cycles may differ from subsequent ones. It also allows us to perform the very first measurement of all four isomerization quantum yields involved in the switching process.
Collapse
|
3
|
Hargreaves R, Duwé S, Rozario AM, Funston AM, Tabor RF, Dedecker P, Whelan DR, Bell TDM. Live-Cell SOFI Correlation with SMLM and AFM Imaging. ACS BIO & MED CHEM AU 2023; 3:261-269. [PMID: 37363082 PMCID: PMC10288496 DOI: 10.1021/acsbiomedchemau.2c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/28/2023]
Abstract
Standard optical imaging is diffraction-limited and lacks the resolving power to visualize many of the organelles and proteins found within the cell. The advent of super-resolution techniques overcame this barrier, enabling observation of subcellular structures down to tens of nanometers in size; however these techniques require or are typically applied to fixed samples. This raises the question of how well a fixed-cell image represents the system prior to fixation. Here we present the addition of live-cell Super-Resolution Optical Fluctuation Imaging (SOFI) to a previously reported correlative process using Single Molecule Localization Microscopy (SMLM) and Atomic Force Microscopy (AFM). SOFI was used with fluorescent proteins and low laser power to observe cellular ultrastructure in live COS-7 cells. SOFI-SMLM-AFM of microtubules showed minimal changes to the microtubule network in the 20 min between live-cell SOFI and fixation. Microtubule diameters were also analyzed through all microscopies; SOFI found diameters of 249 ± 68 nm and SMLM was 71 ± 33 nm. AFM height measurements found microtubules to protrude 26 ± 13 nm above the surrounding cellular material. The correlation of SMLM and AFM was extended to two-color SMLM to image both microtubules and actin. Two target SOFI was performed with various fluorescent protein combinations. rsGreen1-rsKAME, rsGreen1-Dronpa, and ffDronpaF-rsKAME fluorescent protein combinations were determined to be suitable for two target SOFI imaging. This correlative application of super-resolution live-cell and fixed-cell imaging revealed minimal artifacts created for the imaged target structures through the sample preparation procedure and emphasizes the power of correlative microscopy.
Collapse
Affiliation(s)
| | - Sam Duwé
- Advanced
Optical Microscopy Centre, Hasselt University, Diepenbeek 3590, Belgium
| | - Ashley M. Rozario
- Department
of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo 3552, Victoria, Australia
| | - Alison M. Funston
- School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
- ARC
Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Rico F. Tabor
- School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| | - Peter Dedecker
- Department
of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Donna R. Whelan
- Department
of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo 3552, Victoria, Australia
| | - Toby D. M. Bell
- School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
4
|
Miao Y, Weiss S, Yi X. PySOFI: an open source Python package for SOFI. BIOPHYSICAL REPORTS 2022; 2:100052. [PMID: 36425773 PMCID: PMC9680711 DOI: 10.1016/j.bpr.2022.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/25/2022] [Indexed: 06/16/2023]
Abstract
Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution without requirement of sophisticated imaging instruments. Easy-to-use open-source packages for SOFI are important to support the utilization and community adoption of the SOFI method, they also encourage the participation and further development of SOFI by new investigators. In this work, we developed PySOFI, an open-source Python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve, and extend the algorithm. We provide complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI and illustrate how to use each functional module. A demonstration on how to extend the PySOFI package with additional modules is also included in the PySOFI package. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination, and prototyping of new SOFI-relevant algorithms.
Collapse
Affiliation(s)
- Yuting Miao
- Department of Chemistry and Biochemistry, University of California, Los Angeles California
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles California
- Department of Physiology, University of California, Los Angeles California
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiyu Yi
- Lawrence Livermore National Laboratory, Livermore, California
| |
Collapse
|
5
|
Sun Y, Wang Y, Chen K, Sun Y, Wang S. Rational engineering and synthetic applications of a high specificity BiFC probe derived from Springgreen-M. Analyst 2022; 147:4326-4336. [DOI: 10.1039/d2an01124g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high signal-to-noise (S/N) ratio BiFC assay was developed for efficient detection and flexible visualization of protein–protein interactions under physiological conditions in live cells.
Collapse
Affiliation(s)
- Yuao Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yao Wang
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Keyang Chen
- Yuanpei College, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing 100871, China
| | - Sheng Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou 213164, China
| |
Collapse
|
6
|
Valenta H, Hugelier S, Duwé S, Lo Gerfo G, Müller M, Dedecker P, Vandenberg W. Separation of spectrally overlapping fluorophores using intra-exposure excitation modulation. BIOPHYSICAL REPORTS 2021; 1:100026. [PMID: 36425462 PMCID: PMC9680798 DOI: 10.1016/j.bpr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022]
Abstract
Multicolor fluorescence imaging is an excellent method for the simultaneous visualization of multiple structures, although it is limited by the available spectral window. More labels can be measured by distinguishing these on properties, such as their fluorescence dynamics, but usually these dynamics must be directly resolvable by the instrument. We propose an approach to distinguish emitters over a much broader range of light-induced dynamics by combining fast modulation of the light source with the detection of the time-integrated fluorescence. We demonstrate our method by distinguishing four spectrally overlapping photochromic fluorophores within Escherichia coli bacteria, showing that we can accurately classify all four probes by acquiring just two to four fluorescence images. Our strategy expands the range of probes and processes that can be used for fluorescence multiplexing.
Collapse
|
7
|
Hugelier S, Van den Eynde R, Vandenberg W, Dedecker P. Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS. Talanta 2021; 226:122117. [PMID: 33676672 DOI: 10.1016/j.talanta.2021.122117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/03/2023]
Abstract
Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability.
Collapse
Affiliation(s)
- S Hugelier
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium.
| | - R Van den Eynde
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| | - W Vandenberg
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium; Univ. Lille, CNRS, Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement (LASIRE), F-59000 Lille, France
| | - P Dedecker
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
8
|
Simultaneous readout of multiple FRET pairs using photochromism. Nat Commun 2021; 12:2005. [PMID: 33790271 PMCID: PMC8012603 DOI: 10.1038/s41467-021-22043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells. Performing multiple FRET measurements at once can be challenging. Here the authors report a method to discriminate between overlapping FRET pairs, even if the fluorophores display almost identical absorption and emission spectra, based on the photochromism of the donor fluorophores.
Collapse
|
9
|
Wang X, Zhong J, Wang M, Xiong H, Han D, Zeng Y, He H, Tan H. Enhanced temporal and spatial resolution in super-resolution covariance imaging algorithm with deconvolution optimization. JOURNAL OF BIOPHOTONICS 2021; 14:e202000292. [PMID: 33107151 DOI: 10.1002/jbio.202000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Based on the numerical analysis that covariance exhibits superior statistical precision than cumulant and variance, a new SOFI algorithm by calculating the n orders covariance for each pixel is presented with an almost 2n -fold resolution improvement, which can be enhanced to 2n via deconvolution. An optimized deconvolution is also proposed by calculating the (n + 1) order SD associated with each n order covariance pixel, and introducing the results into the deconvolution as a damping factor to suppress noise generation. Moreover, a re-deconvolution of the covariance image with the covariance-equivalent point spread function is used to further increase the final resolution by above 2-fold. Simulated and experimental results show that this algorithm can significantly increase the temporal-spatial resolution of SOFI, meanwhile, preserve the sample's structure. Thus, a resolution of 58 nm is achieved for 20 experimental images, and the corresponding acquisition time is 0.8 seconds.
Collapse
Affiliation(s)
- Xuehua Wang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| | - Junping Zhong
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| | - Mingyi Wang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| | - Honglian Xiong
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| | - Dingan Han
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| | - Yaguang Zeng
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| | - Haiying He
- School of Materials Science and Energy Engineering, Foshan University, Foshan, Guang dong, China
| | - Haishu Tan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guang dong, China
| |
Collapse
|
10
|
Tebo AG, Moeyaert B, Thauvin M, Carlon-Andres I, Böken D, Volovitch M, Padilla-Parra S, Dedecker P, Vriz S, Gautier A. Orthogonal fluorescent chemogenetic reporters for multicolor imaging. Nat Chem Biol 2020; 17:30-38. [PMID: 32778846 PMCID: PMC7610487 DOI: 10.1038/s41589-020-0611-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen activating tags based on the Fluorescence Activating and absorption Shifting Tag (FAST), that are compatible with two-color, live cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development, and the development of split complementation systems capable of detecting multiple protein-protein interactions by live cell fluorescence microscopy.
Collapse
Affiliation(s)
- Alison G Tebo
- Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France.,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.,Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamien Moeyaert
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Marion Thauvin
- Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.,Sorbonne University, Paris, France
| | - Irene Carlon-Andres
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK
| | - Dorothea Böken
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.,Department of Biology, École Normale Supérieure, PSL University, Paris, France
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK.,Department of Infectious Diseases, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Randall Centre for Cell and Molecular Biology, King's College London, London, UK
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Sophie Vriz
- Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.,Faculty of Sciences, Université de Paris, Paris, France
| | - Arnaud Gautier
- Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France. .,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
11
|
Grußmayer KS, Geissbuehler S, Descloux A, Lukes T, Leutenegger M, Radenovic A, Lasser T. Spectral cross-cumulants for multicolor super-resolved SOFI imaging. Nat Commun 2020; 11:3023. [PMID: 32541869 PMCID: PMC7295763 DOI: 10.1038/s41467-020-16841-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Super-resolution optical fluctuation imaging provides a resolution beyond the diffraction limit by analysing stochastic fluorescence fluctuations with higher-order statistics. Using nth order spatio-temporal cross-cumulants the spatial resolution and the sampling can be increased up to n-fold in all spatial dimensions. In this study, we extend the cumulant analysis into the spectral domain and propose a multicolor super-resolution scheme. The simultaneous acquisition of two spectral channels followed by spectral cross-cumulant analysis and unmixing increases the spectral sampling. The number of discriminable fluorophore species is thus not limited to the number of physical detection channels. Using two color channels, we demonstrate spectral unmixing of three fluorophore species in simulations and experiments in fixed and live cells. Based on an eigenvalue/vector analysis, we propose a scheme for an optimized spectral filter choice. Overall, our methodology provides a route for easy-to-implement multicolor sub-diffraction imaging using standard microscopes while conserving the spatial super-resolution property.
Collapse
Affiliation(s)
- K S Grußmayer
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| | - S Geissbuehler
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - A Descloux
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - T Lukes
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - M Leutenegger
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Department of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - A Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - T Lasser
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
12
|
Rozario AM, Zwettler F, Duwé S, Hargreaves RB, Brice A, Dedecker P, Sauer M, Moseley GW, Whelan DR, Bell TDM. ‘Live and Large’: Super-Resolution Optical Fluctuation Imaging (SOFI) and Expansion Microscopy (ExM) of Microtubule Remodelling by Rabies Virus P Protein. Aust J Chem 2020. [DOI: 10.1071/ch19571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of super-resolution microscopy continues to progress rapidly, both in terms of evolving techniques and methodologies as well as in the development of new multi-disciplinary applications. Two current drivers of innovation are increasing the possible resolution gain and application in live samples. Super-resolution optical fluctuation imaging (SOFI) is well suited to live samples while expansion microscopy (ExM) enables obtainment of sub-diffraction information via conventional imaging. In this Highlight we provide a brief outline of these methods and report results from application of SOFI and ExM in our on-going study into microtubule remodelling by rabies virus P proteins. We show that MT bundles in live cells transfected with rabies virus P3 protein can be visualised using SOFI in a time-lapse fashion for up to half an hour and can be expanded using current Pro-ExM protocols and imaged using conventional microscopy.
Collapse
|
13
|
Vandenberg W, Leutenegger M, Duwé S, Dedecker P. An extended quantitative model for super-resolution optical fluctuation imaging (SOFI). OPTICS EXPRESS 2019; 27:25749-25766. [PMID: 31510441 DOI: 10.1364/oe.27.025749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/20/2019] [Indexed: 05/21/2023]
Abstract
Super-resolution optical fluctuation imaging (SOFI) provides super-resolution (SR) fluorescence imaging by analyzing fluctuations in the fluorophore emission. The technique has been used both to acquire quantitative SR images and to provide SR biosensing by monitoring changes in fluorophore blinking dynamics. Proper analysis of such data relies on a fully quantitative model of the imaging. However, previous SOFI imaging models made several assumptions that can not be realized in practice. In this work we address these limitations by developing and verifying a fully quantitative model that better approximates real-world imaging conditions. Our model shows that (i) SOFI images are free of bias, or can be made so, if the signal is stationary and fluorophores blink independently, (ii) allows a fully quantitative description of the link between SOFI imaging and probe dynamics, and (iii) paves the way for more advanced SOFI image reconstruction by offering a computationally fast way to calculate SOFI images for arbitrary probe, sample and instrumental properties.
Collapse
|
14
|
Mishin AS, Lukyanov KA. Live-Cell Super-resolution Fluorescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S19-S31. [PMID: 31213193 DOI: 10.1134/s0006297919140025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Super-resolution fluorescence microscopy (nanoscopy) enables imaging with a spatial resolution much higher than the diffraction limit of optical microscopy. However, the methods of fluorescence nanoscopy are still poorly suitable for studying living cells. In this review, we describe some of methods for nanoscopy and specific fluorescent labeling aimed to decrease the damaging effects of light illumination on live samples.
Collapse
Affiliation(s)
- A S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
15
|
Purohit A, Vandenberg W, Dertinger T, Wöll D, Dedecker P, Enderlein J. Spatio-temporal correlation super-resolution optical fluctuation imaging. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/125/20005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Wang S, Shuai Y, Sun C, Xue B, Hou Y, Su X, Sun Y. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family. ACS Sens 2018; 3:2269-2277. [PMID: 30346738 DOI: 10.1021/acssensors.8b00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a special kind of delicate light-controllable genetically encoded optical device, reversibly photoswitchable fluorescent proteins (RSFPs) have been widely applied in many fields, especially various kinds of advanced nanoscopy approaches in recent years. However, there are still necessities for exploring novel RSFPs with specific biochemical or photophysical properties not only for bioimaging or biosensing applications but also for fluorescent protein (FP) mechanisms study and further knowledge-based molecular sensors or optical actuators' rational design and evolution. Besides previously reported GMars-Q and GMars-T variants, herein, we reported the development and applications of other RSFPs from GMars family, especially some featured RSFPs with desired optical properties. In the current work, in vitro FP purification, spectra measurements, and live-cell RESOLFT nanoscopy approaches were applied to characterize the basic properties and test the imaging performances of the selected RSFPs. As demonstrated, GMars variants such as GMars-A, GMars-G, or remarkable photofatigue-resistant GMars-L were found with beneficial properties to be capable of parallelized RESOLFT nanoscopy in living cells, while other featured GMars variants such as dark GMars-P may be a good candidate for further biosensor or actuator design and applications.
Collapse
Affiliation(s)
- Sheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yao Shuai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Chaoying Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Boxin Xue
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yingping Hou
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Yujie Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Zeng Z, Ma J, Xi P, Xu C. Joint tagging assisted fluctuation nanoscopy enables fast high-density super-resolution imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201800020. [PMID: 29655260 DOI: 10.1002/jbio.201800020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
In fluctuation-based optical nanoscopy, investigating high-density labeled subcellular structures with high fidelity has been a significant challenge. In this study, based on super-resolution radial fluctuation (SRRF) microscopy, the joint tagging (JT) strategy is employed to enable fast high-density nanoscopic imaging and tracking. In fixed cell experiment, multiple types of quantum dots with distinguishable fluorescence spectra are jointly tagged to subcellular microtubules. In each spectral channel, the decrease in labeling density guarantees the high-fidelity super-resolution reconstruction using SRRF microscopy. Subsequently, the combination of all spectral channels achieves high-density super-resolution imaging of subcellular microtubules with a resolution of ~62 nm using JT assisted SRRF technique. In the live-cell experiment, 3-channel JT is utilized to track the dynamic motions of high-density toxin-induced lipid clusters for 1 minute, achieving the simultaneous tracking of many individual toxin-induced lipid clusters spatially distributed significantly below the optical diffraction limit in living cells.
Collapse
Affiliation(s)
- Zhiping Zeng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Jing Ma
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Canhua Xu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
18
|
Roebroek T, Duwé S, Vandenberg W, Dedecker P. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization. Int J Mol Sci 2017; 18:ijms18092015. [PMID: 28930199 PMCID: PMC5618663 DOI: 10.3390/ijms18092015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023] Open
Abstract
Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.
Collapse
Affiliation(s)
- Thijs Roebroek
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Sam Duwé
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Wim Vandenberg
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|