1
|
Flores-Reyes JC, Galano A, Rojas-Montoya SM, Blancarte-Carrazco L, Xochitiotzi-Flores E, García-Ortega H, Farfán N, Islas-Jácome A, González-Zamora E. Synthesis of BODIPY-pyrrolo[3,4- b]pyridin-5-ones via Ugi-Zhu/cascade reactions and studies of fluorescence response toward viscosity. Front Chem 2024; 12:1488933. [PMID: 39494394 PMCID: PMC11527740 DOI: 10.3389/fchem.2024.1488933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
A series of seven new meso-phenyl BODIPY-pyrrolo[3,4-b]pyridin-5-one conjugates were synthesized in one experimental step by using a Sc(III)-catalyzed Ugi-Zhu three-component reaction coupled to a cascade sequence (aza Diels-Alder/N-acylation/aromatization) as post-MCR functionalization process. Further experimental studies were performed behind understanding the fluorescence response toward viscosity. All compounds exhibited a linear response between increasing viscosity (DMSO and glycerol mixtures) and fluorescence intensity. The different substituents also influenced the photophysical properties. Furthermore, in DMSO all compounds exhibited dual emission. Each band is attributed to the pyrrolo[3,4-b]pyridin-5-one and BODIPY moieties, respectively. The electronic structure of all compounds was computed by DFT and TD-DFT calculations, allowing to determine the molecular orbitals involved in the electronic transitions.
Collapse
Affiliation(s)
- Julio C. Flores-Reyes
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Sandra M. Rojas-Montoya
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Blancarte-Carrazco
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elba Xochitiotzi-Flores
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor García-Ortega
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Norberto Farfán
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| |
Collapse
|
2
|
Hiroto S, Chujo M. Donor-Acceptor-Donor Dyads with Electron-Rich π-Extended Azahelicenes to Panchromatic Absorbing Dyes. Chem Asian J 2024:e202400830. [PMID: 39215744 DOI: 10.1002/asia.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Panchromatic dyes have been highly useful in the realm of optical devices. Here, we report that panchromatic dyes with heterohelicenes have been successfully synthesized using a donor-acceptor strategy. Our synthesis resulted in the creation of π-extended aza[5]helicene oligomers with butadiyne linkages, which displayed bathochromically shifted absorption and emission spectra. The solvent-dependent optical measurements revealed the intramolecular charge transfer characteristic of these molecules, and theoretical calculations described the biased molecular orbitals on the azahelicene units that generated the charge-transfer characteristic. Encouraged by these results, we also prepared donor-acceptor-donor dyads using azahelicenes and dimide derivatives, resulting in panchromatic absorbing characteristics covering the range from 250 nm to 800 nm. Theoretical calculations showed the presence of mixed charge-transfer transitions and localized transitions on the azahelicene units, which led to a broad light-absorbing property covering the near IR region. Additionally, we conducted measurements of circular dichroism and circularly polarized luminescence for the obtained products. The g-values were reduced by oligomerization, indicating that the lowest energy transitions were allowed in nature.
Collapse
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Moeko Chujo
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Tang YX, Cao Y, Shi WJ, Li JC, Lu WL, Fan T, Zheng L, Yan JW, Han D, Niu L. Construction of cationic meso-thiazolium-BODIPY AIE fluorescent probes for viscosity imaging in dual organelles. Chem Commun (Camb) 2024; 60:8864-8867. [PMID: 39081239 DOI: 10.1039/d4cc02977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Two new cationic meso-thiazolium-BODIPY-based water-soluble and red-shifted fluorescent probes were constructed for the first time. They can monitor cellular viscosity in dual organelles and show aggregation-induced emission (AIE), which is ascribed to the efficient restricted rotation of meso-thiazolium in viscous or hindered systems. Probe 3 with an N-benzyl group shows better AIE as compared to probe 2 with an N-methyl group.
Collapse
Affiliation(s)
- Yu-Xin Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yingmei Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Cheng Li
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Wei-Lin Lu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Ting Fan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Liyao Zheng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
4
|
Pamungkas KKP, Fureraj I, Assies L, Sakai N, Mercier V, Chen XX, Vauthey E, Matile S. Core-Alkynylated Fluorescent Flippers: Altered Ultrafast Photophysics to Track Thick Membranes. Angew Chem Int Ed Engl 2024; 63:e202406204. [PMID: 38758302 DOI: 10.1002/anie.202406204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Fluorescent flippers have been introduced as small-molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core-alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited-state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core-alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor-like torsional disorder and thus weak, blue-shifted fluorescence. Flipper-like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red-shifted, sharpened excitation maxima, high intensity and long lifetime.
Collapse
Affiliation(s)
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | - Xiao-Xiao Chen
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Shi WJ, Yan XH, Yang J, Wei YF, Huo YT, Su CL, Yan JW, Han D, Niu L. Development of meso-Five-Membered Heterocycle BODIPY-Based AIE Fluorescent Probes for Dual-Organelle Viscosity Imaging. Anal Chem 2023. [PMID: 37311071 DOI: 10.1021/acs.analchem.3c01409] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent rotors with aggregation-induced emission (AIE) and organelle-targeting properties have attracted great attention for sensing subcellular viscosity changes, which could help understand the relationships of abnormal fluctuations with many associated diseases. Despite the numerous efforts spent, it remains rare and urgent to explore the dual-organelle targeting probes and their structural relationships with viscosity-responsive and AIE properties. Therefore, in this work, we reported four meso-five-membered heterocycle-substituted BODIPY-based fluorescent probes, explored their viscosity-responsive and AIE properties, and further investigated their subcellular localization and viscosity-sensing applications in living cells. Interestingly, the meso-thiazole probe 1 showed both good viscosity-responsive and AIE (in pure water) properties and could successfully target both mitochondria and lysosomes, further imaging cellular viscosity changes by treating lipopolysaccharide and nystatin, attributing to the free rotation and potential dual-organelle targeting ability of the meso-thiazole group. The meso-benzothiophene probe 3 with a saturated sulfur only showed good viscosity-responsive properties in living cells with the aggregation-caused quenching effect and no subcellular localization. The meso-imidazole probe 2 showed the AIE phenomenon without an obvious viscosity-responsive property with a C═N bond, while the meso-benzopyrrole probe 4 displayed fluorescence quenching in polar solvents. Therefore, for the first time, we investigated the structure-property relationships of four meso-five-membered heterocycle-substituted BODIPY-based fluorescent rotors with viscosity-responsive and AIE properties, and among these, 1 with a C═N bond and a saturated sulfur on the meso-thiazole, potentially contributing to their corresponding AIE and viscosity-responsive properties, served as a sensitive AIE fluorescent rotor for imaging dual-organelle viscosity in both mitochondria and lysosomes.
Collapse
Affiliation(s)
- Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xu-Hui Yan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Feng Wei
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yi-Tong Huo
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Cai-Ling Su
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| |
Collapse
|
6
|
Ansteatt S, Uthe B, Mandal B, Gelfand RS, Dunietz BD, Pelton M, Ptaszek M. Engineering giant excitonic coupling in bioinspired, covalently bridged BODIPY dyads. Phys Chem Chem Phys 2023; 25:8013-8027. [PMID: 36876508 DOI: 10.1039/d2cp05621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Brian Uthe
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Bikash Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Rachel S Gelfand
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. .,Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
7
|
Shi WJ, Chen R, Yang J, Wei YF, Guo Y, Wang ZZ, Yan JW, Niu L. Novel Meso-Benzothiazole-Substituted BODIPY-Based AIE Fluorescent Rotor for Imaging Lysosomal Viscosity and Monitoring Autophagy. Anal Chem 2022; 94:14707-14715. [PMID: 36222313 DOI: 10.1021/acs.analchem.2c03094] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meso-substituted boron dipyrromethenes (BODIPYs) provide a potential and innovative strategy for the synergistic construction of aggregation-induced emission (AIE) probes and fluorescent rotors for monitoring cellular viscosity changes, which play critical roles in understanding the function of viscosity in its closely associated diseases. Therefore, for the first time, a BODIPY-based fluorescent probe (1) with a rotatable meso-benzothiazole group was rationally designed and synthesized, showing both good viscosity-responsive and AIE properties. Probe 1 through direct linkage with the thiazole group, showed nearly no emission in low viscous solvents; however, a strong emission at 534 nm appeared and increased gradually with the increase in viscosity, attributing to the efficient restriction of the rotatable meso-benzothiazole group. The intensity (log I534) displayed a good linear relationship with viscosity (log η) in the viscous range of 0.59-945 cP in methanol/glycerol mixtures. Interestingly, 1 showed enhanced emission at 534 nm in 70% water compared to pure acetonitrile due to the aggregation-induced inhibited rotations. Cellular imaging suggested that 1 could successfully sense lysosomal viscosity changes induced by lipopolysaccharide, nystatin, low temperature, and dexamethasone in living cells, which could be further applied in autophagy monitoring by tracing viscosity changes. As a comparison, its analogue 2 directly linking with the phenyl group showed no viscosity-responsive or AIE properties. Therefore, for the first time, we reported a meso-benzothiazole-BODIPY-based fluorescent rotor with AIE and lysosomal viscosity-responsive properties in nervous cells, which was further applied in monitoring autophagy, and this work thus could provide an innovative strategy for the design of potential AIE and viscosity-responsive probes.
Collapse
Affiliation(s)
- Wen-Jing Shi
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ru Chen
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Feng Wei
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuhui Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zi-Zhou Wang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Shi WJ, Yang J, Wei YF, Li XT, Yan XH, Wang Y, Leng H, Zheng L, Yan JW. Novel cationic meso-CF 3 BODIPY-based AIE fluorescent rotors for imaging viscosity in mitochondria. Chem Commun (Camb) 2022; 58:1930-1933. [PMID: 35040863 DOI: 10.1039/d1cc06532g] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two novel meso-CF3 BODIPY-based fluorescent rotors have been rationally prepared and found to sensitively respond to viscosity in living cells with a fluorescence "turn-on" effect, attributed to the special restricted rotation of meso-CF3 group in viscous environments. Interestingly, a monostyryl probe with one cationic group exhibits good mitochondrial localization and AIE property.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xiao-Tong Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xu-Hui Yan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yuxuan Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Huaxiang Leng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
9
|
Liu BK, Teng KX, Niu LY, Yang QZ. Progress in the Synthesis of Boron Dipyrromethene (BODIPY) Fluorescent Dyes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Patalag LJ, Hoche J, Holzapfel M, Schmiedel A, Mitric R, Lambert C, Werz DB. Ultrafast Resonance Energy Transfer in Ethylene-Bridged BODIPY Heterooligomers: From Frenkel to Förster Coupling Limit. J Am Chem Soc 2021; 143:7414-7425. [PMID: 33956430 DOI: 10.1021/jacs.1c01279] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of distinct BODIPY heterooligomers (dyads, triads, and tetrads) comprising a variable number of typical green BODIPY monomers and a terminal red-emitting styryl-equipped species acting as an energy sink was prepared and subjected to computational and photophysical investigations in solvent media. An ethylene tether between the single monomeric units provides a unique foldameric system, setting the stage for a systematic study of excitation energy transfer processes (EET) on the basis of nonconjugated oscillators. The influence of stabilizing β-ethyl substituents on conformational space and the disorder of site energies and electronic couplings was addressed. In this way both the strong (Frenkel) and the weak (Förster) coupling limit could be accessed within a single system: the Frenkel limit within the strongly coupled homooligomeric green donor subunit and the Förster limit at the terminal heterosubstituted ethylene bridge. Femtosecond transient-absorption spectroscopy combined with mixed quantum-classical dynamic simulations demonstrate the limitations of the Förster resonance energy transfer (FRET) theory and provide a consistent framework to elucidate the trend of increasing relaxation lifetimes at higher homologues, revealing one of the fastest excitation energy transfer processes detected to date with a corresponding lifetime of 39 fs.
Collapse
Affiliation(s)
- Lukas J Patalag
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Joscha Hoche
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitric
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
She M, Wang Z, Chen J, Li Q, Liu P, Chen F, Zhang S, Li J. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213712] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Flores JR, Castruita-De León G, Turlakov G, Arias E, Moggio I, Montemayor SM, Torres R, Ledezma R, Ziolo RF, González-Torres J. Dual Emission of meso-Phenyleneethynylene-BODIPY Oligomers: Synthesis, Photophysics, and Theoretical Optoelectronic Study. Chemistry 2021; 27:2493-2505. [PMID: 33119951 DOI: 10.1002/chem.202004481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 11/08/2022]
Abstract
Two series of 2,5-di(butoxy)phenyleneethynylenes, one halogenated (nPEC4-X; n=2, 3, or 4) and the other boron-dipyrromethene (BODIPY) terminated (nPEC4-By; n=3, 4, or 5; By=BODIPY), were synthesized monodirectionally by the step-by-step approach and the molecular structure was corroborated by NMR spectroscopy (1 H, 13 C-DEPTQ-135, COSY, HSQC, HMBC, 11 B, 19 F) and MALDI-TOF mass spectrometry. The multiplicity and J-coupling constants of 1 H, 11 B, and 19 F/11 B NMR signals revealed, in the nPEC4-By series, that the phenyl in the meso position of BODIPY becomes electronically part of the conjugation of the phenyleneethynylene chain, whereas BODIPY is electronically isolated. The photophysical, electrochemical, and theoretical studies confirm this finding because the properties of nPEC4-By are comparable to those of the nPEC4-X oligomers and BODIPY, indicating negligible electron communication between BODIPY and the nPEC4 moieties. Nevertheless, energy transfer (ET) from nPEC4 to BODIPY was rationalized by spectroscopy and theoretical calculations. Its yield decreases with the nPEC4 conjugation length, according to the increase in distance between the two chromophores, resulting in dual emission for the longest oligomer in which ET is quenched.
Collapse
Affiliation(s)
- J Reyes Flores
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Griselda Castruita-De León
- CONACYT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Gleb Turlakov
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Sagrario M Montemayor
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Román Torres
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Raquel Ledezma
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Ronald F Ziolo
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Julio González-Torres
- Área de Física Atómica Molecular Aplicada (FAMA), Universidad Autónoma Metropolitana-Azcapotzalco CBI, Av. San Pablo 180, Col. Reynosa Tamaulipas, CD de México, C.P., 02200, Mexico
| |
Collapse
|
13
|
Nabeshima T, Chiba Y, Nakamura T, Matsuoka R. Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes. Synlett 2020. [DOI: 10.1055/s-0040-1707155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.1 Introduction2 Linear Oligomers of Boron–Dipyrrin Complexes3 Cyclic Oligomers of Boron–Dipyrrin Complexes4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes5 Group 13 Element Complexes of N2Ox Dipyrrins6 Chiral N2 and N2Ox Dipyrrin Complexes7 Group 14 Element Complexes of N2O2 Dipyrrins8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions9 Conclusion
Collapse
|
14
|
Wu Q, Kang Z, Gong Q, Guo X, Wang H, Wang D, Jiao L, Hao E. Strategic Construction of Ethene-Bridged BODIPY Arrays with Absorption Bands Reaching the Near-Infrared II Region. Org Lett 2020; 22:7513-7517. [PMID: 32969229 DOI: 10.1021/acs.orglett.0c02704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient strategy for the controllable synthesis of BODIPY arrays based on the Stille cross-coupling reaction has been developed, from which a family of well-defined ethene-bridged BODIPY arrays from dimer to hexamer was synthesized. These arrays showed strong absorptions reaching the near-infrared II (NIR II, 1000-1700 nm) region with maxima tunable from 702 nm (dimer) to 1114 nm (hexamer) and possessed efficient light-harvesting capabilities, excellent photostability, and good photothermal conversion abilities under NIR light irradiation.
Collapse
Affiliation(s)
- Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
15
|
Maity A, Sarkar A, Bhaktha B. N S, Patra SK. Design and synthesis of perfluoroalkyl decorated BODIPY dye for random laser action in a microfluidic device. NEW J CHEM 2020. [DOI: 10.1039/d0nj03108a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New and highly emissive 2,6-diacetynyl and 2,6-bis-(phenylacetynyl) functionalized pentamethyldifluoroboron-dipyrromethane (BODIPY) derivatives (FBDP1–2) with perfluorinated pendant groups at the boron center have been synthesized successfully by the combination of two strategies, extending the π-conjugation and functionalization at the boron centre.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Anirban Sarkar
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | | | - Sanjib K. Patra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
16
|
Bozdemir ÖA, Al‐Sharif HHT, McFarlane W, Waddell PG, Benniston AC, Harriman A. Solid‐State Emission from Mono‐ and Bichromophoric Boron Dipyrromethene (BODIPY) Derivatives and Comparison with Fluid Solution. Chemistry 2019; 25:15634-15645. [DOI: 10.1002/chem.201903902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Özgür Altan Bozdemir
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of ChemistryAtaturk University Erzurum 25240 Turkey
| | - Hatun H. T. Al‐Sharif
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - William McFarlane
- NMR Laboratory, SNESNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Paul G. Waddell
- Crystallography Laboratory, SNESNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Andrew C. Benniston
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
17
|
Miao W, Yu C, Hao E, Jiao L. Functionalized BODIPYs as Fluorescent Molecular Rotors for Viscosity Detection. Front Chem 2019; 7:825. [PMID: 31850314 PMCID: PMC6901978 DOI: 10.3389/fchem.2019.00825] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Abnormal changes of intracellular microviscosity are associated with a series of pathologies and diseases. Therefore, monitoring viscosity at cellular and subcellular levels is important for pathological research. Fluorescent molecular rotors (FMRs) have recently been developed to detect viscosity through a linear correlation between fluorescence intensity or lifetime and viscosity. Recently, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (boron dipyrrins or BODIPY) derivatives have been widely used to build FMRs for viscosity probes due to their high rotational ability of the rotor and potentially high brightness. In this minireview, functionalized BODIPYs as FMRs for viscosity detection were collected, analyzed and summarized.
Collapse
Affiliation(s)
| | | | | | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
18
|
|
19
|
Lv F, Yu Y, Hao E, Yu C, Wang H, Boens N, Jiao L. Highly regioselective α-formylation and α-acylation of BODIPY dyes via tandem cross-dehydrogenative coupling with in situ deprotection. Org Biomol Chem 2019; 17:5121-5128. [PMID: 31073552 DOI: 10.1039/c9ob00927b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal-free C-H formylation and acylation of BODIPY dyes using a variety of dioxolane derivatives as aldehyde equivalents is reported, providing a postfunctionalization method for controllable synthesis of BODIPYs with carbonyl groups at 3,5-positions via a radical process. The photophysical properties of resultant dyes from this efficient one-pot, chemo- and site-selective transformation have been studied.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Yang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Noёl Boens
- Department of Chemistry, KU Leuven (Katholieke Universiteit Leuven), Celestijnenlaan 200f, 3001 Leuven, Belgium.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
20
|
Wang J, Li Y, Gong Q, Wang H, Hao E, Lo PC, Jiao L. β-AlkenylBODIPY Dyes: Regioselective Synthesis via Oxidative C-H Olefination, Photophysical Properties, and Bioimaging Studies. J Org Chem 2019; 84:5078-5090. [PMID: 30964680 DOI: 10.1021/acs.joc.9b00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of 2-alkenyl- and 2,6-dialkenylboron dipyrromethene (BODIPY) derivatives were synthesized through Pd(II)-catalyzed regioselective and stereoselective oxidative C-H olefination in one step. The 2-alkenyl BODIPY derivative further reacted with various amines regioselectively at the 5-position through direct oxidative nucleophilic substitution. The photophysical properties of the 2-alkenyl- and 2,6-dialkenyl-substituted BODIPYs were investigated, which showed great potential in fluorescent bioimaging.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yongxin Li
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Pui-Chi Lo
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
21
|
Tang B, Lv F, Chen K, Jiao L, Liu Q, Wang H, Hao E. Development of BODIPY dyes with versatile functional groups at 3,5-positions from diacyl peroxides via Cu(ii)-catalyzed radical alkylation. Chem Commun (Camb) 2019; 55:4691-4694. [DOI: 10.1039/c9cc01602c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Cu(ii)-catalyzed, α-regioselective C–H alkylation of BODIPY with alkyl diacyl peroxides provides structurally diverse alkylated BODIPYs via a radical pathway.
Collapse
Affiliation(s)
- Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Fan Lv
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Kangkang Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| |
Collapse
|
22
|
Wu Q, Yuan J, Yu C, Wei Y, Mu X, Jiao L, Hao E. Synthesis, structure and photophysical properties of dibenzofuran-fused boron dipyrromethenes. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regioselective functionalization of core per-substituted boron dipyrromethenes (BODIPYs) has been achieved efficiently based on tetrabromoBODIPY, which affords a series of dibenzofuran-fused chromophores, via a regioselective nucleophilic substitution reaction followed by direct palladium-catalyzed two-fold intramolecular ring fusion. These rigid dibenzofuran-fused BODIPYs showed impressive photophysical properties such as clearly red-shifted absorption and emission bands, enhanced absorption coefficients upon and intense fluorescence (close to unity).
Collapse
Affiliation(s)
- Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Jin Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Yun Wei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Xiaolong Mu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
23
|
Multiple BODIPY derivatives with 1,3,5-triazine as core: balance between fluorescence and numbers of BODIPY units. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1444-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Kang H, Si Y, Liu Y, Zhang X, Zhang W, Zhao Y, Yang B, Liu Y, Liu Z. Photophysical/Chemistry Properties of Distyryl-BODIPY Derivatives: An Experimental and Density Functional Theoretical Study. J Phys Chem A 2018; 122:5574-5579. [DOI: 10.1021/acs.jpca.8b02656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongwei Kang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yubing Si
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xiaofan Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Weiwei Zhang
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yaxuan Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
25
|
Lv F, Yu Y, Hao E, Yu C, Wang H, Jiao L, Boens N. Copper-catalyzed α-benzylation of BODIPYs via radical-triggered oxidative cross-coupling of two C–H bonds. Chem Commun (Camb) 2018; 54:9059-9062. [PMID: 30051114 DOI: 10.1039/c8cc04679d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An oxidative cross-dehydrogenative coupling of BODIPYs with toluene and it derivatives has been developed, allowing for the facile synthesis of a broad range of structurally diverse α-benzylated BODIPYs with high solid-state fluorescence.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Yang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Noël Boens
- Department of Chemistry
- KU Leuven (Katholieke Universiteit Leuven)
- 3001 Leuven
- Belgium
| |
Collapse
|