1
|
Fischer N, Tóth A, Jancsó A, Thulstrup P, Diness F. Inducing α-Helicity in Peptides by Silver Coordination to Cysteine. Chemistry 2024; 30:e202304064. [PMID: 38456607 DOI: 10.1002/chem.202304064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Short peptide sequences consisting of two cysteine residues separated by three other amino acids display complete change from random coil to α-helical secondary structure in response to addition of Ag+ ions. The folded CXXXC/Ag+ complex involves formation of multinuclear Ag+ species and is stable in a wide pH range from below 3 to above 8. The complex is stable through reversed-phase HPLC separation as well as towards a physiological level of chloride ions, based on far-UV circular dichroism spectroscopy. In electrospray MS under acidic conditions a peptide dimer with four Ag+ ions bound was observed, and modelling based on potentiometric experiments supported this to be the dominating complex at neutral pH together with a peptide dimer with 3 Ag+ and one proton at lower pH. The complex was demonstrated to work as a N-terminal nucleation site for inducing α-helicity into longer peptides. This type of silver-mediated peptide assembly and folding may be of more general use for stabilizing not only peptide folding but also for controlling oligomerization even under acidic conditions.
Collapse
Affiliation(s)
- Niklas Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Annamária Tóth
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Attila Jancsó
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Peter Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
2
|
Vargová Z, Olejníková P, Kuzderová G, Rendošová M, Havlíčková J, Gyepes R, Vilková M. Silver(I) complexes with amino acid and dipeptide ligands - Chemical and antimicrobial relevant comparison (mini review). Bioorg Chem 2023; 141:106907. [PMID: 37844541 DOI: 10.1016/j.bioorg.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Diseases caused by various microorganisms accompany humans (as well as animals) throughout their whole lives. After germs penetration to the body, the incubation period and infection developing, an infection can cause mild or severe symptoms, not infrequently even death. The immune system naturally defends itself against pathogens with various mechanisms. One of them is the synthesis of antimicrobial peptides. In the case of serious and severe infections, it is currently possible to help the natural immunity by administration of antimicrobial drugs (AMB) with good success since their discovery at the beginning of the last century. However, their excessive use leads to the development of pathogenic microorganisms' resistance to AMB drugs. Based on this, it is necessary to constantly develop new classes of AMB drugs that will be effective against pathogens, even resistant ones. The field of bioinorganic chemistry, similarly to other biological, chemical, or pharmaceutical sciences, discovers various options and approaches for antimicrobial treatment, from the development of new drugs to drug delivery systems. One of the approaches is the design and preparation of potential drugs based on metal ions and antimicrobial peptides. Various metal ions and amino acid or peptide ligands are used for this purpose. In this mini review, we focused on a reliable comparison of the chemical structure and biological properties of selected silver(I) complexes based on amino acids and dipeptides.
Collapse
Affiliation(s)
- Zuzana Vargová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia.
| | - Petra Olejníková
- Department of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Gabriela Kuzderová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Michaela Rendošová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Jana Havlíčková
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Róbert Gyepes
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Mária Vilková
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| |
Collapse
|
3
|
Segovia R, Díaz-Lobo M, Cajal Y, Vilaseca M, Rabanal F. Linker-Free Synthesis of Antimicrobial Peptides Using a Novel Cleavage Reagent: Characterisation of the Molecular and Ionic Composition by nanoESI-HR MS. Pharmaceutics 2023; 15:pharmaceutics15041310. [PMID: 37111798 PMCID: PMC10141159 DOI: 10.3390/pharmaceutics15041310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The efficient preparation of novel bioactive peptide drugs requires the availability of reliable and accessible chemical methodologies together with suitable analytical techniques for the full characterisation of the synthesised compounds. Herein, we describe a novel acidolytic method with application to the synthesis of cyclic and linear peptides involving benzyl-type protection. The process consists of the in situ generation of anhydrous hydrogen bromide and a trialkylsilyl bromide that acts as protic and Lewis acid reagents. This method proved to be useful to effectively remove benzyl-type protecting groups and cleave Fmoc/tBu assembled peptides directly attached to 4-methylbenzhydrylamine (MBHA) resins with no need for using mild trifluoroacetic acid labile linkers. The novel methodology was successful in synthesising three antimicrobial peptides, including the cyclic compound polymyxin B3, dusquetide, and RR4 heptapeptide. Furthermore, electrospray mass spectrometry (ESI-MS) is successfully used for the full characterisation of both the molecular and ionic composition of the synthetic peptides.
Collapse
Affiliation(s)
- Roser Segovia
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), BIST (The Barcelona Institute of Science and Technology), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Yolanda Cajal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), BIST (The Barcelona Institute of Science and Technology), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Monneau Y, Arrault C, Duroux C, Martin M, Chirot F, Mac Aleese L, Girod M, Comby-Zerbino C, Hagège A, Walker O, Hologne M. Structural and dynamical insights into SilE silver binding from combined analytical probes. Phys Chem Chem Phys 2023; 25:3061-3071. [PMID: 36617868 DOI: 10.1039/d2cp04206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Silver has been used for its antimicrobial properties to fight infection for thousands of years. Unfortunately, some Gram-negative bacteria have developed silver resistance causing the death of patients in a burn unit. The genes responsible for silver resistance have been designated as the sil operon. Among the proteins of the sil operon, SilE has been shown to play a key role in bacterial silver resistance. Based on the limited information available, it has been depicted as an intrinsically disordered protein that folds into helices upon silver ion binding. Herein, this work demonstrates that SilE is composed of 4 clearly identified helical segments in the presence of several silver ions. The combination of analytical and biophysical techniques (NMR spectroscopy, CD, SAXS, HRMS, CE-ICP-MS, and IM-MS) reveals that SilE harbors four strong silver binding sites among the eight sites available. We have also further evidenced that SilE does not adopt a globular structure but rather samples a large conformational space from elongated to more compact structures. This particular structural organization facilitates silver binding through much higher accessibility of the involved His and Met residues. These valuable results will advance our current understanding of the role of SilE in the silver efflux pump complex mechanism and will help in the future rational design of inhibitors to fight bacterial silver resistance.
Collapse
Affiliation(s)
- Yoan Monneau
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Cyrielle Arrault
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Coraline Duroux
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Marie Martin
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Fabien Chirot
- Univ Lyon 1, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, Villeurbanne 69100, France
| | - Luke Mac Aleese
- Univ Lyon 1, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, Villeurbanne 69100, France
| | - Marion Girod
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Clothilde Comby-Zerbino
- Univ Lyon 1, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, Villeurbanne 69100, France
| | - Agnès Hagège
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Olivier Walker
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Maggy Hologne
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| |
Collapse
|
5
|
Wand ME, Sutton JM. Efflux-mediated tolerance to cationic biocides, a cause for concern? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748532 DOI: 10.1099/mic.0.001263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.
Collapse
Affiliation(s)
- Matthew E Wand
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
6
|
Krutyakov YA, Khina AG. Bacterial Resistance to Nanosilver: Molecular Mechanisms and Possible Ways to Overcome them. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Liu Q, Wu Y, Feng M, Chen W, Zheng Z. Rare Silver-Histidine Cluster Complex and Its Single-Crystal-to-Single-Crystal Phase-Transition Behavior. ACS OMEGA 2022; 7:8141-8149. [PMID: 35284717 PMCID: PMC8908525 DOI: 10.1021/acsomega.2c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Silver complexes with proteinogenic amino acid ligands are of interest for biomedical and antimicrobial applications. In this work, we obtained {[Ag7(l-his)4](NO3)3·3H2O}0.2{[Ag8(l-his)4(H2O)2](NO3)4·3H2O}0.8 (1) and {[Ag7(d-his)4](NO3)3·3H2O}0.2{[Ag8(d-his)4(H2O)2](NO3)4·3H2O}0.8 (2), which represent the first example of any Ag-exclusive complex featuring a cluster-type core motif and with only proteinogenic amino acid ligands. Upon immersion into acetonitrile, an interesting single-crystal-to-single-crystal transformation occurred to produce a new cluster complex of the formula [Ag8(l-his)4(NO3)(H2O)](NO3)3 (3). Using a racemic mixture of histidine, the reaction under otherwise identical conditions led to the production of the second example of a three-dimensional (3D) network structured Ag-exclusive complex with only a proteinogenic amino acid ligand. Compared with other Ag-histidine complexes in the literature, the significance of reaction conditions, particularly the Ag/histidine ratio and pH of the reaction mixture, is revealed. Temperature-dependent emission of 1 and 2 at 440 nm characteristic of silver-philophilic interactions was also observed.
Collapse
Affiliation(s)
- Qingxin Liu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yinglan Wu
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Min Feng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wanmin Chen
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Zhiping Zheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Babel L, Nguyen MH, Mittelheisser C, Martin M, Fromm KM, Walker O, Hologne M. NMR reveals the interplay between SilE and SilB model peptides in the context of silver resistance. Chem Commun (Camb) 2021; 57:8726-8729. [PMID: 34396382 PMCID: PMC8686694 DOI: 10.1039/d1cc02597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SilE and SilB are both proteins involved in the silver efflux pump found in Gram-negative bacteria such as S. typhimurium. Using model peptides along with NMR and CD experiments, we show how SilE may store silver ions prior to delivery and we hypothesize for the first time the interplay between SilB and SilE. Illustrative sketch representative of the interplay between the SilB and SilE proteins in the context of silver bacteria resistance. In case of an excess of silver, SilE plays the role of a regulator and avoids a collapse of the silver efflux pump.![]()
Collapse
Affiliation(s)
- Lucille Babel
- University of Fribourg, Department of Chemistry, chemin du musée 9, Fribourg 1700, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Yoshihara K, Nagaoka N, Umeno A, Sonoda A, Obika H, Yoshida Y, Van Meerbeek B, Makita Y. Antibacterial Effect of Amino Acid-Silver Complex Loaded Montmorillonite Incorporated in Dental Acrylic Resin. MATERIALS 2021; 14:ma14061442. [PMID: 33809621 PMCID: PMC8000155 DOI: 10.3390/ma14061442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Several dental materials contain silver for antibacterial effect, however the effect is relatively low. The reason for the lower antibacterial efficacy of silver is considered to be the fact that silver ions bind to chloride ions in saliva. To develop new effective silver antibacterial agents that can be useful in the mouth, we synthesized two novel amino acid (methionine or histidine)-silver complexes (Met or His-Ag) loaded with montmorillonite (Mont) and analyzed their antibacterial efficacy. At first the complexes were characterized using nuclear magnetic resonance (NMR), and amino acid-Ag complex-loaded Mont (amino acid-Ag-Mont) were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of these materials in dental acrylic resin was then investigated by bacterial growth measurement using a spectrophotometer. As controls, commercially available silver-loaded zeolite and silver-zirconium phosphate were also tested. Dental acrylic resin incorporating His-Ag-Mont strongly inhibited Streptococcus mutans growth. This was explained by the fact that His-Ag complex revealed the highest amounts of silver ions in the presence of chloride. The structure of the amino acid-Ag complexes affected the silver ion presence in chloride and the antibacterial efficacy. His-Ag-Mont might be used as antibacterial agents for dental materials.
Collapse
Affiliation(s)
- Kumiko Yoshihara
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa 761-0395, Japan; (A.U.); (A.S.); (H.O.); (Y.M.)
- Department of Pathology & Experimental Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan
- Correspondence:
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama 700-8558, Japan;
| | - Aya Umeno
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa 761-0395, Japan; (A.U.); (A.S.); (H.O.); (Y.M.)
| | - Akinari Sonoda
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa 761-0395, Japan; (A.U.); (A.S.); (H.O.); (Y.M.)
| | - Hideki Obika
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa 761-0395, Japan; (A.U.); (A.S.); (H.O.); (Y.M.)
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Hokkaido 060-8586, Japan;
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven) Department of Oral Health Research, BIOMAT & University Hospitals Leuven, B-3000 Leuven, Belgium;
| | - Yoji Makita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa 761-0395, Japan; (A.U.); (A.S.); (H.O.); (Y.M.)
| |
Collapse
|
10
|
Multiple Compounds Secreted by Pseudomonas aeruginosa Increase the Tolerance of Staphylococcus aureus to the Antimicrobial Metals Copper and Silver. mSystems 2020; 5:5/5/e00746-20. [PMID: 32900873 PMCID: PMC7483513 DOI: 10.1128/msystems.00746-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alternative antimicrobials, such as metals, are one of the methods currently used to help mitigate antibiotic resistance. Metal-based antimicrobials such as copper and silver are used currently both to prevent and to treat infections. Although the efficacy of these antimicrobials has been determined in single-species culture, bacteria rarely exist in a single-species group in the environment. Both Pseudomonas aeruginosa and Staphylococcus aureus are often found associated with each other in severe chronic infections displaying increased virulence and antibiotic tolerance. In this study, we determined that multiple compounds secreted by P. aeruginosa are able to increase the tolerance of S. aureus to both copper and silver. This work demonstrates the expansive chemical communication occurring in polymicrobial infections between bacteria. Metal-based antimicrobials have been used for thousands of years to treat and prevent bacterial infections. Currently, both silver and copper are used in health care and industry to prevent and treat the spread of harmful bacteria. However, like most antimicrobial agents, their efficacy against polymicrobial infections has not been fully elucidated. Coinfection with Pseudomonas aeruginosa and Staphylococcus aureus and the resulting interactions have been implicated in higher virulence, antibiotic resistance, and increased chronic infections. Here, the influence of secreted compounds from P. aeruginosa on metal antimicrobial tolerance in S. aureus was examined. This study determined that multiple compounds from P. aeruginosa increase the tolerance of S. aureus to copper and/or silver when cultured in simulated wound fluid. The presence of these secreted compounds from P. aeruginosa during exposure of S. aureus to copper or silver increased the MIC from 500 μM to 2,000 μM for copper and 16 to 63 μM for silver. The contribution of specific compounds to S. aureus tolerance was determined using gene deletion and disruption mutants, and metabolite analysis. Compounds identified as potential contributors were then individually added to S. aureus during metal exposure. Copper tolerance in S. aureus was found to be increased by amino acids and dihydroaeruginoate (Dha) secreted by P. aeruginosa. The silver tolerance provided to S. aureus was influenced only by two amino acids, serine and threonine, as well as the Pseudomonas quinolone signal (PQS) molecules from P. aeruginosa. IMPORTANCE Alternative antimicrobials, such as metals, are one of the methods currently used to help mitigate antibiotic resistance. Metal-based antimicrobials such as copper and silver are used currently both to prevent and to treat infections. Although the efficacy of these antimicrobials has been determined in single-species culture, bacteria rarely exist in a single-species group in the environment. Both Pseudomonas aeruginosa and Staphylococcus aureus are often found associated with each other in severe chronic infections displaying increased virulence and antibiotic tolerance. In this study, we determined that multiple compounds secreted by P. aeruginosa are able to increase the tolerance of S. aureus to both copper and silver. This work demonstrates the expansive chemical communication occurring in polymicrobial infections between bacteria.
Collapse
|
11
|
Pantidos N, Horsfall L. Understanding the role of SilE in the production of metal nanoparticles by Morganella psychrotolerans using MicroScale Thermophoresis. N Biotechnol 2020; 55:1-4. [PMID: 31539639 DOI: 10.1016/j.nbt.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Metal nanoparticle synthesis has been observed in several species of bacteria but the underlying mechanisms of synthesis are not well understood. Morganella psychrotolerans is a Gram-negative psychrophilic bacterium that is able to tolerate relatively high concentrations of Cu and Ag ions, and it is through the associated resistance pathways that this species is able to convert metal ions to nanoparticles. The purpose of this study was to investigate the mechanism of nanoparticle synthesis, looking at the interaction of the metal binding protein SilE with metal ions using MicroScale Thermophoresis (MST). MST assays give a rapid and accurate determination of binding affinities, allowing for the testing of SilE with a range of environmentally significant metal ions. The binding affinities (Kd) of Ag+ and Cu2+ were measured as 0.17 mM and 0.13 mM respectively, consistent with the observations of strong binding reported in the literature, whereas the binding to Al3+ and Co2+ was measured as Kd values of 4.19 mM and 1.35 mM respectively.
Collapse
Affiliation(s)
- Nikolaos Pantidos
- School of Biological Sciences and Centre for Science at Extreme Conditions, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Roger Land Building, Edinburgh, EH9 3FF, United Kingdom
| | - Louise Horsfall
- School of Biological Sciences and Centre for Science at Extreme Conditions, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Roger Land Building, Edinburgh, EH9 3FF, United Kingdom.
| |
Collapse
|
12
|
Abstract
Silver(I) is being largely studied for its antimicrobial properties. In parallel to that growing interest, some researchers are investigating the effect of this ion on eukaryotes and the mechanism of silver resistance of certain bacteria. For these studies, and more generally in biology, it is necessary to work in buffer systems that are most suitable, i.e., that interact least with silver cations. Selected buffers such as 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid (HEPES) were therefore investigated for their use in the presence of silver nitrate. Potentiometric titrations allowed to determine stability constants for the formation of (Ag(Buffer)) complexes. The obtained values were adapted to extract the apparent binding constants at physiological pH. The percentage of metal ions bound to the buffer was calculated at this pH for given concentrations of buffer and silver to realize at which extent silver was interacting with the buffer. We found that in the micromolar range, HEPES buffer is sufficiently coordinating to silver to have a non-negligible effect on the thermodynamic parameters determined for an analyte. Morpholinic buffers were more suitable as they turned out to be weaker complexing agents. We thus recommend the use of MOPS for studies of physiological pH.
Collapse
|
13
|
Cui J, Duan M, Sun Q, Fan W. Simvastatin decreases the silver resistance of E. faecalis through compromising the entrapping function of extracellular polymeric substances against silver. World J Microbiol Biotechnol 2020; 36:54. [PMID: 32172435 DOI: 10.1007/s11274-020-02830-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive bacterium closely related to many refractory infections of human and shows the resistant ability against the antibacterial effects of silver. Simvastatin is a semisynthetic compound derived from lovastatin and a hydroxymethyl glutaryl coenzyme A(HMG-COA) reductase inhibitor showing certain inhibitive effects on bacteria. The main purpose of this study was to establish and characterize the Ag+/silver nanoparticles (AgNPs)-resistant E. faecalis, and further evaluate the function of extracellular polymeric substances (EPS) in the silver resistance and the effect of simvastatin on the silver-resistance of E. faecalis. The results showed that the established silver-resistant E. faecalis had strong resistance against both Ag+ and AgNPs and simvastatin could decrease the silver-resistance of both original and Ag+/AgNPs-resistant E. faecalis. The Transmission electron microscopy (TEM), High-angle annular dark-field (HAADF) and mapping images showed that the silver ions or particles aggregated and confined in the EPS on surface areas of the cell membrane when the silver-resistant E. faecalis were incubated with Ag+ or AgNPs. When the simvastatin was added, the silver element was not confined in the EPS and entered the bacteria. These findings may indicate that the silver resistance of E. faecalis was derived from the entrapping function of EPS, but simvastatin could compromise the function of EPS to decrease the silver resistant ability of E. faecalis.
Collapse
Affiliation(s)
- Jingwen Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Mengting Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
14
|
Sadoon AA, Khadka P, Freeland J, Gundampati RK, Manso RH, Ruiz M, Krishnamurthi VR, Thallapuranam SK, Chen J, Wang Y. Silver Ions Caused Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live Bacteria. Appl Environ Microbiol 2020; 86:e02479-19. [PMID: 31953329 PMCID: PMC7054089 DOI: 10.1128/aem.02479-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antimicrobial activity and mechanism of silver ions (Ag+) have gained broad attention in recent years. However, dynamic studies are rare in this field. Here, we report our measurement of the effects of Ag+ ions on the dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy (sptPALM). It was found that treating the bacteria with Ag+ ions led to faster diffusive dynamics of H-NS proteins. Several techniques were used to understand the mechanism of the observed faster dynamics. Electrophoretic mobility shift assay on purified H-NS proteins indicated that Ag+ ions weaken the binding between H-NS proteins and DNA. Isothermal titration calorimetry confirmed that DNA and Ag+ ions interact directly. Our recently developed sensing method based on bent DNA suggested that Ag+ ions caused dehybridization of double-stranded DNA (i.e., dissociation into single strands). These evidences led us to a plausible mechanism for the observed faster dynamics of H-NS proteins in live bacteria when subjected to Ag+ ions: Ag+-induced DNA dehybridization weakens the binding between H-NS proteins and DNA. This work highlighted the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.IMPORTANCE As so-called "superbug" bacteria resistant to commonly prescribed antibiotics have become a global threat to public health in recent years, noble metals, such as silver, in various forms have been attracting broad attention due to their antimicrobial activities. However, most of the studies in the existing literature have relied on the traditional bioassays for studying the antimicrobial mechanism of silver; in addition, temporal resolution is largely missing for understanding the effects of silver on the molecular dynamics inside bacteria. Here, we report our study of the antimicrobial effect of silver ions at the nanoscale on the diffusive dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy. This work highlights the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.
Collapse
Affiliation(s)
- Asmaa A Sadoon
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Physics, University of Thi Qar, Thi Qar, Iraq
| | - Prabhat Khadka
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ryan H Manso
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | | | | | - Jingyi Chen
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
15
|
Chabert V, Babel L, Füeg MP, Karamash M, Madivoli ES, Herault N, Dantas JM, Salgueiro CA, Giese B, Fromm KM. Kinetics and Mechanism of Mineral Respiration: How Iron Hemes Synchronize Electron Transfer Rates. Angew Chem Int Ed Engl 2020; 59:12331-12336. [DOI: 10.1002/anie.201914873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Valentin Chabert
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Lucille Babel
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Michael P. Füeg
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Maksym Karamash
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Edwin S. Madivoli
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Nelly Herault
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Joana M. Dantas
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Carlos A. Salgueiro
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Bernd Giese
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| |
Collapse
|
16
|
Chabert V, Babel L, Füeg MP, Karamash M, Madivoli ES, Herault N, Dantas JM, Salgueiro CA, Giese B, Fromm KM. Kinetik und Mechanismus der mineralischen Atmung: Eisen‐Häme synchronisieren die Geschwindigkeit des Elektronentransfers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valentin Chabert
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Lucille Babel
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Michael P. Füeg
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3 3012 Bern Schweiz
| | - Maksym Karamash
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Edwin S. Madivoli
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Nelly Herault
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Joana M. Dantas
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Carlos A. Salgueiro
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Bernd Giese
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Katharina M. Fromm
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| |
Collapse
|
17
|
Park G, Amaris ZN, Eiken MK, Baumgartner KV, Johnston KA, Williams MA, Markwordt JG, Millstone JE, Splan KE, Wheeler KE. Emerging investigator series: characterization of silver and silver nanoparticle interactions with zinc finger peptides. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2367-2378. [PMID: 31528351 PMCID: PMC6746224 DOI: 10.1039/c9en00065h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity and antimicrobial and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag(I) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag(I) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag(I)(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag(I) into apo-ZF peptides show an Ag(I)-thiolate charge transfer band, indicative of Ag(I)-ZF binding. Fluorescence studies of the Zn(II)-NCp_7 complex indicate that the Ag(I) also effectively competes with the Zn(II) to drive Zn(II) displacement from the ZFs. Upon interaction with AgENMs, Zn(II) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag(I) and AgENMs may alter ZF protein function within the cell.
Collapse
Affiliation(s)
- Grace Park
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Zoe N Amaris
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Madeline K Eiken
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Karl V Baumgartner
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Kathryn A Johnston
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA 15260, USA
| | - Mari A Williams
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Jasmine G Markwordt
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA 15260, USA
| | - Kathryn E Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, USA
| | - Korin E Wheeler
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| |
Collapse
|
18
|
Chabert V, Hologne M, Sénèque O, Walker O, Fromm KM. Alpha-helical folding of SilE models upon Ag(His)(Met) motif formation. Chem Commun (Camb) 2018; 54:10419-10422. [PMID: 30132476 DOI: 10.1039/c8cc03784a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The SilE protein is suspected to have a prominent role in Ag+ detoxification of silver resistant bacteria. Using model peptides, we elucidated both qualitative and quantitative aspects of the Ag+-induced α-helical structuring role of His- and Met-rich sequences of SilE, improving our understanding of its function within the Sil system.
Collapse
Affiliation(s)
- Valentin Chabert
- University of Fribourg, Department of Chemistry, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Alsalme A, Khan RA, Alkathiri AM, Ali MS, Tabassum S, Jaafar M, Al-Lohedan HA. β-Carboline Silver Compound Binding Studies with Human Serum Albumin: A Comprehensive Multispectroscopic Analysis and Molecular Modeling Study. Bioinorg Chem Appl 2018; 2018:9782419. [PMID: 29770145 PMCID: PMC5889910 DOI: 10.1155/2018/9782419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
β-Carbolines (βCs) belong to the naturally occurring alkaloid family, derived from 9H-pyrido[3,4-b]indole, also known as norharmane (Hnor). Knowing the importance of the βCs alkaloid family in biological processes, a comprehensive binding study is reported of four Ag(I) compounds containing the ligand Hnor and having different counteranions, namely, NO3-, ClO4-, BF4-, and PF6-, with human serum albumin (HSA) as a model protein. Different approaches like UV-visible, fluorescence spectroscopy, circular dichroism (CD), and molecular docking studies have been used for this purpose. The fluorescence results establish that the phenomenon of binding of Ag(Hnor) complexes to HSA can be deduced from the static quenching mechanism. The results showed a significant binding propensity of the used Ag(I) compounds towards HSA. The role of the counteranion on the binding of Ag(I) compounds to HSA appeared to be remarkable. Compounds with (ClO4-) and (NO3-) were found to have the most efficient binding towards HSA as compared to BF4-and PF6-. Circular dichroism (CD) studies made clear that conformational changes in the secondary structure of HSA were induced by the presence of Ag(I) compounds. Also, the α-helical structure of HSA was found to get transformed into a β-sheeted structure. Interestingly, (ClO4-) and (NO3-) compounds were found to induce most substantial changes in the secondary structure of HSA. The outcome of this study may contribute to understanding the propensity of proteins involved in neurological diseases (such as Alzheimer's and Parkinson's diseases) to undergo a similar transition in the presence of Ag-β-carboline compounds.
Collapse
Affiliation(s)
- Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arwa M. Alkathiri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd. Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sartaj Tabassum
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Jaafar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|