1
|
van der Westhuizen D, Castro AC, Hazari N, Gevorgyan A. Bulky, electron-rich, renewable: analogues of Beller's phosphine for cross-couplings. Catal Sci Technol 2023; 13:6733-6742. [PMID: 38026730 PMCID: PMC10680433 DOI: 10.1039/d3cy01375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
In recent years, considerable progress has been made in the conversion of biomass into renewable chemicals, yet the range of value-added products that can be formed from biomass remains relatively small. Herein, we demonstrate that molecules available from biomass serve as viable starting materials for the synthesis of phosphine ligands, which can be used in homogeneous catalysis. Specifically, we prepared renewable analogues of Beller's ligand (di(1-adamantyl)-n-butylphosphine, cataCXium® A), which is widely used in homogeneous catalysis. Our new renewable phosphine ligands facilitate Pd-catalysed Suzuki-Miyaura, Stille, and Buchwald-Hartwig coupling reactions with high yields, and our catalytic results can be rationalized based on the stereoelectronic properties of the ligands. The new phosphine ligands generate catalytic systems that can be applied for the late-stage functionalization of commercial drugs.
Collapse
Affiliation(s)
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo 0315 Oslo Norway
| | - Nilay Hazari
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Ashot Gevorgyan
- Department of Chemistry, UiT The Arctic University of Norway 9037 Tromsø Norway
| |
Collapse
|
2
|
Hu GQ, Zhang WY, Liu YX, Liu JH, Zhao B. Visible Light-Accelerated Palladium-Catalyzed Thiocarbonylation Using Oxalic Acid Monothioester with Aryl/Alkenyl Sulfonium Salts. J Org Chem 2023; 88:14351-14356. [PMID: 37802501 DOI: 10.1021/acs.joc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.
Collapse
Affiliation(s)
- Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Su F, Zhao Q, Wang M, Zhao M, Ren Y, Zhu B, Chen H, Lai M, Zhao M. A Convenient Esterification of
N
‐Heteroarene Methanols
via
C–CN Bond Cleavage of Benzoyl Cyanides as Acylating Sources. ChemistrySelect 2022. [DOI: 10.1002/slct.202104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Mengzhuo Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingzhang Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Yihe Ren
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Binghan Zhu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Haoran Chen
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
4
|
Sonam, Shinde VN, Kumar A. KPF6-Mediated Esterification and Amidation of Carboxylic Acids. J Org Chem 2022; 87:2651-2661. [DOI: 10.1021/acs.joc.1c02611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonam
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vikki N. Shinde
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
5
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
6
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
7
|
Li J, Zhou J, Wang Y, Yu Y, Liu Q, Yang T, Chen H, Cao H. Mechanistic insight into the synergistic Cu/Pd-catalyzed carbonylation of aryl iodides using alcohols and dioxygen as the carbonyl source. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Tien CH, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium-Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2021; 60:4342-4349. [PMID: 33085182 DOI: 10.1002/anie.202010211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/08/2020] [Indexed: 12/22/2022]
Abstract
The application of carboxy-MIDA-boronate (MIDA=N-methyliminodiacetic acid) as an in situ CO surrogate for various palladium-catalyzed transformations is described. Carboxy-MIDA-boronate was previously shown to be a bench-stable boron-containing building block for the synthesis of borylated heterocycles. The present study demonstrates that, in addition to its utility as a precursor to heterocycle synthesis, carboxy-MIDA-boronate is an excellent in situ CO surrogate that is tolerant of reactive functionalities such as amines, alcohols, and carbon-based nucleophiles. Its wide functional-group compatibility is highlighted in the palladium-catalyzed aminocarbonylation, alkoxycarbonylation, carbonylative Sonogashira coupling, and carbonylative Suzuki-Miyaura coupling of aryl halides. A variety of amides, esters, (hetero)aromatic ynones, and bis(hetero)aryl ketones were synthesized in good-to-excellent yields in a one-pot fashion.
Collapse
Affiliation(s)
- Chieh-Hung Tien
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Branden S Kwak
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Reed T Larson
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
9
|
Cheng S, Ou C, Lin H, Jia J, Tang H, Pan Y, Huang G, Meng X. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Tien C, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium‐Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Alina Trofimova
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Branden S. Kwak
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| |
Collapse
|
11
|
Zhao B, Fu Y, Shang R. Oxalic Acid Monothioester for Palladium-Catalyzed Decarboxylative Thiocarbonylation and Hydrothiocarbonylation. Org Lett 2019; 21:9521-9526. [PMID: 31746206 DOI: 10.1021/acs.orglett.9b03701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxalic acid monothioester (OAM), an easily accessible and storable reagent, was reported herein as a thioester synthetic equivalent for palladium-catalyzed decarboxylative thiocarbonylation of organohalides and hydrothiocarbonylation of unsaturated carbon-carbon bonds at room temperature with high chemo- and regioselectivity. The reaction is applicable to the synthesis of cysteine-derived thioesters, thus allowing chemical modification of cysteine-containing peptides. Decarboxylation of OAM proceeds through oxidative addition of Pd(0) to the acyl-S bond, which accounts for the very mild reaction conditions.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yao Fu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Rui Shang
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China.,Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
12
|
Wang L, Neumann H, Spannenberg A, Beller M. An Efficient Protocol to Synthesize N-Acyl-enamides and -Imines by Pd-Catalyzed Carbonylations. Chemistry 2018; 24:2164-2172. [PMID: 29171680 DOI: 10.1002/chem.201704704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/09/2023]
Abstract
For the first time, the bidentate phosphinite ligand 1,2-bis(di-tert-butylphosphinoxy)ethane (tBu2 POCH2 CH2 OPtBu2 ) was synthesized. In the presence of this ligand, various N-acyl enamides were obtained in good yields and chemoselectivity by Pd-catalyzed carbonylation reaction of imines containing α-H. Meanwhile, imines without α-H could be transformed to N-acyl imines, which form highly hindered amides by straightforward addition of Grignard reagents.
Collapse
Affiliation(s)
- Lin Wang
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|