1
|
Cui K, Li R, Zhang Y, Qiu Y, Zhao N, Cui Y, Wu W, Liu T, Xiao Z. Molecular Planarization of Raman Probes to Avoid Background Interference for High-Precision Intraoperative Imaging of Tumor Micrometastases and Lymph Nodes. NANO LETTERS 2022; 22:9424-9433. [PMID: 36378880 DOI: 10.1021/acs.nanolett.2c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intraoperative imaging applications of a large number of Raman probes are hampered by the overlap of their signals with the background Raman signals generated by biological tissues. Here, we describe a molecular planarization strategy for adjusting the Raman shift of these Raman probes to avoid interference. Using this strategy, we modify the backbone of thiophene polymer-poly(3-hexylthiophene) (P3HT), and obtain the adjacent thiophene units planarized polycyclopenta[2,1-b;3,4-b']dithiophene (PCPDT). Compared with P3HT whose signal is disturbed by the Raman signal of lipids in tissues, PCPDT exhibits a 60 cm-1 blueshift in its characteristic signal. Therefore, the PCPDT probe successfully avoids the signal of lipids, and achieves intraoperative imaging of lymph nodes and tumor micrometastasis as small as 0.30 × 0.36 mm. In summary, our study presents a concise molecular planarization strategy for regulating the signal shift of Raman probes, and brings a tunable thiophene polymer probe for high-precision intraoperative Raman imaging.
Collapse
Affiliation(s)
- Kai Cui
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ruike Li
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yongming Zhang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yuanyuan Qiu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, People's Republic of China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tize Liu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Dan Q, Yuan Z, Zheng S, Ma H, Luo W, Zhang L, Su N, Hu D, Sheng Z, Li Y. Gold Nanoclusters-Based NIR-II Photosensitizers with Catalase-like Activity for Boosted Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14081645. [PMID: 36015272 PMCID: PMC9416189 DOI: 10.3390/pharmaceutics14081645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy (PDT) under fluorescence imaging as a selective and non-invasive treatment approach has been widely applied for the therapy of cancer and bacterial infections. However, its treatment efficiency is hampered by high background fluorescence in the first near-infrared window (NIR-I, 700–900 nm) and oxygen-dependent photosensitizing activity of traditional photosensitizers. In this work, we employ gold nanoclusters (BSA@Au) with the second near-infrared (NIR-II, 1000–1700 nm) fluorescence and catalase-like activity as alternative photosensitizers to realize highly efficient PDT. The bright NIR-II fluorescence of BSA@Au enables the visualization of PDT for tumor with a high signal-to-background ratio (SBR = 7.3) in 4T1 tumor-bearing mouse models. Furthermore, the catalase-like activity of BSA@Au endows its oxygen self-supplied capability, contributing to a five-fold increase in the survival period of tumor-bearing mice receiving boosted PDT treatment compared to that of the control group. Moreover, we further demonstrate that BSA@Au-based PDT strategy can be applied to treat bacterial infections. Our studies show the great potential of NIR-II BSA@Au as a novel photosensitizer for boosted PDT against cancer and bacterial infections.
Collapse
Affiliation(s)
- Qing Dan
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huanrong Ma
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zonghai Sheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Z.S.); (Y.L.)
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Z.S.); (Y.L.)
| |
Collapse
|
3
|
Xie HN, Chen YY, Zhu GB, Han HH, Hu XL, Pan ZQ, Zang Y, Xie DH, He XP, Li J, James TD. Targeted delivery of maytansine to liver cancer cells via galactose-modified supramolecular two-dimensional glycomaterial. Chem Commun (Camb) 2022; 58:5029-5032. [PMID: 35373789 DOI: 10.1039/d1cc06809a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional (2D) glycomaterial for targeted delivery of maytansine to liver cancer cells was developed. Host-guest interaction between a galactosyl dye and human serum albumin (HSA) produces supramolecular galactoside-HSA conjugates, which are then used to coat 2D MoS2. The 2D glycomaterial was shown to be capable of the targeted delivery of maytansine to a liver cancer cell line that highly expresses a galactose receptor, resulting in greater cytotoxicity than maytansine alone.
Collapse
Affiliation(s)
- Hai-Na Xie
- School of Basic Medicinal Sciences, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Rd., Shanghai, P. R. China
| | - Yu-Yuan Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Zhi-Qiang Pan
- School of Basic Medicinal Sciences, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Rd., Shanghai, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, P. R. China.
| | - Dong-Hao Xie
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, No. 540 Xinghua Rd., Shanghai, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Sun N, Wen X, Zhang S. Strategies to Improve Photodynamic Therapy Efficacy of Metal-Free Semiconducting Conjugated Polymers. Int J Nanomedicine 2022; 17:247-271. [PMID: 35082494 PMCID: PMC8786367 DOI: 10.2147/ijn.s337599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive therapy for cancer and bacterial infection. Metal-free semiconducting conjugated polymers (SCPS) with good stability and optical and electrical properties are promising photosensitizers (PSs) for PDT compared with traditional small-molecule PSs. This review analyzes the latest progress of strategies to improve PDT effect of linear, planar, and three-dimensional SCPS, including improving solubility, adjusting conjugated structure, enhancing PS-doped SCPs, and combining therapies. Moreover, the current issues, such as hypoxia, low penetration, targeting and biosafety of SCPS, and corresponding strategies, are discussed. Furthermore, the challenges and potential opportunities on further improvement of PDT for SCPs are presented.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xue Wen
- School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Song Zhang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
6
|
Montaseri H, Kruger CA, Abrahamse H. Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells. Oncotarget 2020; 11:2120-2136. [PMID: 32547709 PMCID: PMC7275783 DOI: 10.18632/oncotarget.27596] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Targeted Photodynamic therapy (TPDT) is a non-invasive and site-specific treatment modality, which has been utilized to eradicate cancer tumour cells with photoactivated chemicals or photosensitizers (PSs), in the presence of laser light irradiation and molecular tissue oxygen. Breast cancer is the commonest cancer among women worldwide and is currently treated using conventional methods such as chemotherapy, radiotherapy and surgery. Despite the recent advancements made in PDT, poor water solubility and non-specificity of PSs, often affect the overall effectivity of this unconventional cancer treatment. With respect to conventional PS obstacles, great strides have been made towards the application of targeted nanoparticles in PDT to resolve these limitations. Therefore, this review provides an overview of scientific peer reviewed published studies in relation to functionalized organic nanoparticles (NPs) for effective TPDT treatment of breast cancer over the last 10 years (2009 to 2019). The main aim of this review is to highlight the importance of organic NP active based PDT targeted drug delivery systems, to improve the overall biodistribution of PSs in breast cancer tumour's.
Collapse
Affiliation(s)
- Hanieh Montaseri
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
7
|
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez AM, Lopez JC. BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry 2020; 26:5388-5399. [PMID: 31999023 DOI: 10.1002/chem.201905780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/11/2022]
Abstract
A series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness. Accordingly, some BODIPY derivatives described in this work can withstand the reaction conditions commonly employed in the chemical synthesis of saccharides; namely, glycosylation and protecting-group manipulations. Regarding their photophysical properties, the BODIPY-labeled saccharides obtained in this work display remarkable fluorescence efficiency in water, reaching quantum yield values up to 82 %, as well as notable lasing efficiencies and photostabilities.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Caterina Permingeat
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Ventura
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | | | - Ana M Gómez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
8
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
9
|
Lan M, Zhao S, Liu W, Lee C, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019; 8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Indexed: 12/12/2022]
Abstract
As an emerging clinical modality for cancer treatment, photodynamic therapy (PDT) takes advantage of the cytotoxic activity of reactive oxygen species (ROS) that are generated by light irradiating photosensitizers (PSs) in the presence of oxygen (O2 ). However, further advancements including tumor selectivity and ROS generation efficiency are still required. Substantial efforts are devoted to design and synthesize smart PSs with optimized properties for achieving a desirable therapeutic efficacy. This review summarizes the recent progress in developing intelligent PSs for efficient PDT, ranging from single molecules to delicate nanomaterials. The strategies to improve ROS generation through optimizing photoinduced electron transfer and energy transfer processes of PSs are highlighted. Moreover, the approaches that combine PDT with other therapeutics (e.g., chemotherapy, photothermal therapy, and radiotherapy) and the targeted delivery in cancer cells or tumor tissue are introduced. The main challenges for the clinical application of PSs are also discussed.
Collapse
Affiliation(s)
- Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Wenjun Zhang
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
10
|
Zhao Y, Deng Y, Tang Z, Jin Q, Ji J. Zwitterionic Reduction-Activated Supramolecular Prodrug Nanocarriers for Photodynamic Ablation of Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1919-1926. [PMID: 30204452 DOI: 10.1021/acs.langmuir.8b02745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An adamantane-containing zwitterionic copolymer poly(2-(methacryloyloxy)ethyl phosphorylcholine)- co-poly(2-(methacryloyloxy)ethyl adamantane-1-carboxylate) (poly(MPC- co-MAda)) was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. The hydrophobic photosensitizer chlorin e6 (Ce6) was conjugated to β-cyclodextrin (β-CD) by glutathione (GSH)-sensitive disulfide bonds. The Ce6 conjugated supramolecular prodrug nanocarriers were fabricated due to the host-guest interaction between adamantane and β-CD, which was confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The Ce6 conjugated prodrug nanocarriers showed reduction-responsive release of Ce6, which could result in the activation of Ce6. The generation of cytotoxic reactive oxygen species (ROS) was significantly enhanced due to the activation of Ce6. In additiona, the Ce6 conjugated prodrug nanocarriers could effectively inhibit the proliferation of cancer cells upon light irradiation.
Collapse
Affiliation(s)
- Yiming Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhe Tang
- Department of Surgery, second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310009 , China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
11
|
Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 2019; 110:319-341. [DOI: 10.1016/j.biopha.2018.11.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
|
12
|
Svechkarev D, Mohs AM. Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications. Curr Med Chem 2019; 26:4042-4064. [PMID: 29484973 PMCID: PMC6703954 DOI: 10.2174/0929867325666180226111716] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral properties tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in the design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications.
Collapse
Affiliation(s)
- Denis Svechkarev
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| | - Aaron M. Mohs
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| |
Collapse
|
13
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
14
|
Di Maria F, Lodola F, Zucchetti E, Benfenati F, Lanzani G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem Soc Rev 2018; 47:4757-4780. [PMID: 29663003 DOI: 10.1039/c7cs00860k] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Artificially enhancing light sensitivity in living cells allows control of neuronal paths or vital functions avoiding the wiring associated with the use of stimulation electrodes. Many possible strategies can be adopted for reaching this goal, including the direct photoexcitation of biological matter, the genetic modification of cells or the use of opto-bio interfaces. In this review we describe different light actuators based on both inorganic and organic semiconductors, from planar abiotic/biotic interfaces to nanoparticles, that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system. In particular, we will focus on the application of thiophene-based materials which, thanks to their unique chemical-physical properties, geometrical adaptability, great biocompatibility and stability, have allowed the development of a new generation of fully organic light actuators for in vivo applications.
Collapse
|
15
|
He XP, Tian H. Lightening Up Membrane Receptors with Fluorescent Molecular Probes and Supramolecular Materials. Chem 2018. [DOI: 10.1016/j.chempr.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|