1
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
2
|
Delogu GL, Begala M, Matos MJ, Crucitti D, Sogos V, Era B, Fais A. A New Class of Benzo[ b]thiophene-chalcones as Cholinesterase Inhibitors: Synthesis, Biological Evaluation, Molecular Docking and ADME Studies. Molecules 2024; 29:3748. [PMID: 39202830 PMCID: PMC11356821 DOI: 10.3390/molecules29163748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes 4a-4i and benzothiophene-chalcone hybrids 5a-5i were tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing interesting structure-activity relationships. In general, benzothiophene-chalcone hybrids from series 5 proved to be better inhibitors of both enzymes, with compound 5f being the best AChE inhibitor (IC50 = 62.10 μM) and compound 5h being the best BChE inhibitor (IC50 = 24.35 μM), the last one having an IC50 similar to that of galantamine (IC50 = 28.08 μM), the reference compound. The in silico ADME profile of the compounds was also studied. Molecular docking calculations were carried out to analyze the best binding scores and to elucidate enzyme-inhibitors' interactions.
Collapse
Affiliation(s)
- Giovanna Lucia Delogu
- Department of Live and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy; (M.B.); (B.E.); (A.F.)
| | - Michela Begala
- Department of Live and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy; (M.B.); (B.E.); (A.F.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Davide Crucitti
- Group of Computational Genomics and Hematology (GreCoXen), Health Research Institute of Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain;
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valeria Sogos
- Department of Biomediacal Science, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy;
| | - Benedetta Era
- Department of Live and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy; (M.B.); (B.E.); (A.F.)
| | - Antonella Fais
- Department of Live and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy; (M.B.); (B.E.); (A.F.)
| |
Collapse
|
3
|
Shao T, Ban X, Jiang Z. α-Amino Acids: An Emerging Versatile Synthon in Visible Light-Driven Decarboxylative Transformations. CHEM REC 2023; 23:e202300122. [PMID: 37276383 DOI: 10.1002/tcr.202300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Indexed: 06/07/2023]
Abstract
α-Amino acids have been widely recognized as environmental-benign and non-fossil carbon sources both in biological and synthetic chemistry. In recent years, with the remarkable development of visible-light photocatalysis in organic synthesis, α-amino acid and its derivatives have received tremendous attention as radical precursors via photocatalyzed decarboxylation, thus realizing diverse aminoalkylated transformations or constructions of novel N-bearing heterocyclic motifs by taking advantage of N-atoms from α-amino acid. This review aims to provide a comprehensive update on the recent exploitation of α-amino acids in visible light photocatalysis, with particular emphasis on the types of α-amino acids employed and their distinct mechanisms applied wherein.
Collapse
Affiliation(s)
- Tianju Shao
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Jinming Campus, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
4
|
Simek Tosino H, Jung A, Fuhr O, Muhle‐Goll C, Jung N, Bräse S. F‐Tag Induced Acyl Shift in the Photochemical Cyclization of
o
‐Alkynylated
N
‐Alkyl‐
N
‐acylamides to Indoles**. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Helena Simek Tosino
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - André Jung
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Olaf Fuhr
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Claudia Muhle‐Goll
- Institute for Biological Interfaces 4 Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Runemark A, Sundén H. Overcoming Back Electron Transfer in the Electron Donor-Acceptor Complex-Mediated Visible Light-Driven Generation of α-Aminoalkyl Radicals from Secondary Anilines. J Org Chem 2023; 88:462-474. [PMID: 36479960 PMCID: PMC9830629 DOI: 10.1021/acs.joc.2c02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An additive-free, visible light-driven annulation between N-aryl amino acids and maleimide to form tetrahydroquinolines (THQs) is disclosed. Photochemical activation of an electron donor-acceptor (EDA) complex between amino acids and maleimides drives the reaction, and aerobic oxygen acts as the terminal oxidant in the net oxidative process. A range of N-aryl amino acids and maleimides have been investigated as substrates to furnish the target THQ in good to excellent yield. Mechanistic investigations, including titration and UV-vis studies, demonstrate the key role of the EDA complex as the photoactive species.
Collapse
Affiliation(s)
- August Runemark
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden
| | - Henrik Sundén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden,Chemistry
and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 412 96, Sweden,
| |
Collapse
|
6
|
Hu J, Zhu Z, Xie Z, Le Z. Recent Advances in Visible-Light-Induced Decarboxylative Coupling Reactions of α-Amino Acid Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kang QQ, Zhang WK, Ge GP, Zheng H, Wei WT. The construction of benzimidazo[2,1- a]isoquinolin-6(5 H)-ones from N-methacryloyl-2-phenylbenzoimidazoles through radical strategies. Org Biomol Chem 2021; 19:8874-8885. [PMID: 34610071 DOI: 10.1039/d1ob01465j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzimidazo[2,1-a]isoquinolin-6(5H)-one constitutes a structurally unique class of tetracyclic N-heterocycles that are found throughout a myriad of biologically active natural products, pharmaceutical compounds, and functional materials. Various synthetic routes for the preparation of benzimidazo[2,1-a]isoquinolin-6(5H)-ones have been reported. In particular, the use of N-methacryloyl-2-phenylbenzoimidazoles to construct benzimidazo[2,1-a]isoquinolin-6(5H)-ones through various radical strategies have attracted widespread attention due to the versatility and simple preparation of raw materials, as well as the step-economy and mild reaction conditions. Using representative examples, we highlight significant progress in the synthesis of benzimidazo[2,1-a]isoquinolin-6(5H)-ones, including the selection of the catalytic system, substrate scope, mechanistic understanding, and applications. The contents of this review focus on the development of C-, S-, P-, and Si-centered radical addition-intramolecular cyclization strategies.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei-Kang Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
8
|
Kumar Y, Ila H. Synthesis of Substituted Benzo[b]thiophenes via Base-Promoted Domino Condensation–Intramolecular C–S Bond Formation. Org Lett 2021; 23:1698-1702. [DOI: 10.1021/acs.orglett.1c00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yogendra Kumar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
9
|
Pan Z, Hu F, Jiang D, Liu Y, Xia C. Chichibabin pyridinium synthesis via oxidative decarboxylation of photoexcited α-enamine acids. Chem Commun (Camb) 2021; 57:1222-1225. [PMID: 33416811 DOI: 10.1039/d0cc07636h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-induced decarboxylative Chichibabin pyridinium synthesis between α-amino acids and aldehydes was developed. When the in situ generated α-enamine acids were photoexcited, they were oxidized by aerobic oxygen to give radical cation species. After decarboxylation and further oxidation, the generated iminium undergoes Chichibabin cyclization to afford pyridiniums. This photochemical protocol enables the synthesis of various tetra-substituted pyridiniums and related natural products in one-step.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Di Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
10
|
Huang Q, Zhao M, Yang Y, Niu YN, Xia XF. Visible-light-induced and copper-catalyzed oxidative cyclization of substituted o-aminophenylacetylene for the synthesis of quinoline and indole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00914a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A visible-light-induced and copper-catalyzed oxidative cyclization of substituted o-aminophenylacetylene for the synthesis of quinoline and indole derivatives was developed.
Collapse
Affiliation(s)
- Quan Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mingming Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yiqiang Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, Jiangsu, 223003, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
11
|
Li M, Wang T, An Z, Yan R. B(C 6F 5) 3-Catalyzed cyclization of alkynes: direct synthesis of 3-silyl heterocyclic compounds. Chem Commun (Camb) 2020; 56:11953-11956. [PMID: 33033821 DOI: 10.1039/d0cc04314a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient one-pot strategy for easy access to 3-silyl heterocyclic compounds was developed via a B(C6F5)3-catalyzed cycloaddition reaction of o-(1-alkynyl)(thio)anisoles or o-(1-alkynyl)-N-methylaniline. In this reaction, benzenethiophene, benzofuran or indole skeletons could be constructed by an intermolecular cyclization with diphenylsilane. This protocol elicited moderate-to-good yields with metal-free reaction systems.
Collapse
Affiliation(s)
- Mengxing Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.
| | | | | | | |
Collapse
|
12
|
Duc DX. Recent Achievement in the Synthesis of Benzo[b]furans. Curr Org Synth 2020; 17:498-517. [PMID: 32586253 DOI: 10.2174/1570179417666200625212639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[b]furan derivatives are oxygen-containing heterocyclic compounds consisting of fused benzene and furan rings and are present in a large number of natural and non-natural compounds. This class of compounds has a wide spectrum of biological activities, such as antiarrhythmic, anticancer, inflammatory, antioxidant, antimicrobial, and antiviral. Furthermore, benzo[b]furan derivatives have also been applied in various areas, such as organic electroluminescence device materials and organic dyes, photosensitizing material, organic synthesis as building blocks or intermediates. Because of a broad range of applicability, the synthesis of benzo[b]furan derivative has drawn great attention of chemists and many studies on the synthesis of this class of compounds have been reported recently. This review will give an overview of benzo[b]furan preparation based on studies dating back to the year 2012. OBJECTIVE In this review, recent development in the synthesis of benzo[b]furans are discussed. There has been increasingly new methodologies for the construction of benzo[b]furans skeleton to improve efficiency or develop environmentally friendly procedures. In some studies, reaction mechanisms were also outlined. CONCLUSION Many methods for the synthesis of benzo[b]furans have been reported recently. Most of them involve cyclization or cycloisomerization processes. Unquestionably, more imaginative strategies for the construction of benzo[b]furan skeleton will be established in the near future. Application of known methods to natural products or drug synthesis, on industrial scale for the synthesis of economically or medicinally important benzo[ b]furans will probably be paid attention to.
Collapse
Affiliation(s)
- Dau Xuan Duc
- Department of Chemistry, Vinh University, Vinh City, Vietnam
| |
Collapse
|
13
|
Neto JSS, Zeni G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org Chem Front 2020. [DOI: 10.1039/c9qo01315f] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights ten years of success in the synthesis of indoles using alkynes and nitrogen sources as substrates.
Collapse
Affiliation(s)
- José Sebastião Santos Neto
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE
- UFSM
- Santa Maria
| | - Gilson Zeni
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE
- UFSM
- Santa Maria
| |
Collapse
|
14
|
Saini KM, Saunthwal RK, Kumar S, Verma AK. On water: iodine-mediated direct construction of 1,3-benzothiazines from ortho-alkynylanilines by regioselective 6-exo-dig cyclization. Org Biomol Chem 2019; 17:2657-2662. [PMID: 30762860 DOI: 10.1039/c9ob00128j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, we report the 6-exo-dig ring closure of ortho-alkynylanilines with readily available aroyl isothiocyanate. An environmentally benign, metal- and base-free, iodine promoted cascade synthesis of highly functionalized (benzo[1,3]thiazin-2-yl)benzimidic acids has been accomplished via in situ generated ortho-alkynylthiourea. The established methodology employs the abundant chemical feedstock of ortho-alkynylanilines and aroyl isothiocyanates and could be applied in the late-stage synthesis of pharmaceutically active 1,3-benzothiazine containing molecules. Furthermore, the discovered protocol exclusively delivers bis (benzo[1,3]thiazin-2-yl)dibenzimidic acid products and preserves the iodo-olefin substitution pattern which can be exploited by further derivatization.
Collapse
Affiliation(s)
- Kapil Mohan Saini
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | | | | | |
Collapse
|
15
|
Sun K, Li SJ, Chen XL, Liu Y, Huang XQ, Wei DH, Qu LB, Zhao YF, Yu B. Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1-a]isoquinolin-6(5H)-ones. Chem Commun (Camb) 2019; 55:2861-2864. [PMID: 30761394 DOI: 10.1039/c8cc10243k] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient decarboxylative radical addition/cyclization strategy was developed, by which a wide range of benzimidazo[2,1-a]isoquinoline-6(5H)-ones were prepared in one-pot via reaction of functionalized 2-arylbenzoimidazoles and carboxylic acids in the presence of K2S2O8/AgNO3 under mild reaction conditions.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xia XF, He W, Zhang GW, Wang D. Iron-catalyzed reductive cyclization reaction of 1,6-enynes for the synthesis of 3-acylbenzofurans and thiophenes. Org Chem Front 2019. [DOI: 10.1039/c8qo01190g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of 3-acylbenzofurans and thiophenes via iron(ii)-catalyzed reductive cyclization of 1,6-enynes has been developed.
Collapse
Affiliation(s)
- Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Wei He
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Guo-Wei Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
17
|
Weng WZ, Liang H, Zhang B. Visible-Light-Mediated Aerobic Oxidation of Organoboron Compounds Using in Situ Generated Hydrogen Peroxide. Org Lett 2018; 20:4979-4983. [DOI: 10.1021/acs.orglett.8b02095] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wei-Zhi Weng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hao Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
18
|
Bai QF, Jin C, He JY, Feng G. Carbamoyl Radicals via Photoredox Decarboxylation of Oxamic Acids in Aqueous Media: Access to 3,4-Dihydroquinolin-2(1H)-ones. Org Lett 2018; 20:2172-2175. [DOI: 10.1021/acs.orglett.8b00449] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Qi-Fan Bai
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People’s Republic of China
| | - Chengan Jin
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People’s Republic of China
| | - Jing-Yao He
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People’s Republic of China
| | - Gaofeng Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People’s Republic of China
| |
Collapse
|
19
|
|
20
|
Silver-Catalyzed Decarboxylative Couplings of Acids and Anhydrides: An Entry to 1,2-Diketones and Aryl-Substituted Ethanes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Huang MH, Hao WJ, Li G, Tu SJ, Jiang B. Recent advances in radical transformations of internal alkynes. Chem Commun (Camb) 2018; 54:10791-10811. [DOI: 10.1039/c8cc04618b] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights the recent progress in the radical transformation of internal alkynes and focuses on the reaction mechanisms by carbon/heteroatom-centered triggered additions, and offers a comprehensive overview on the existing procedures and employed methodologies.
Collapse
Affiliation(s)
- Min-Hua Huang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
- Department of Chemistry and Biochemistry
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
22
|
Liu W, Hu YQ, Hong XY, Li GX, Huang XB, Gao WX, Liu MC, Xia Y, Zhou YB, Wu HY. Direct synthesis of 3-acylbenzothiophenes via the radical cyclization of 2-alkynylthioanisoles with α-oxocarboxylic acids. Chem Commun (Camb) 2018; 54:14148-14151. [DOI: 10.1039/c8cc07735e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical cascade cyclization strategy has been developed to provide a direct route to access 3-acylbenzothiophenes from simple chemical feedstocks.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Yao-Qian Hu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Xiao-Yi Hong
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Guo-Xing Li
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| |
Collapse
|
23
|
Gu L, Gao Y, Ai X, Jin C, He Y, Li G, Yuan M. Direct alkylheteroarylation of alkenes via photoredox mediated C–H functionalization. Chem Commun (Camb) 2017; 53:12946-12949. [DOI: 10.1039/c7cc06484e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The direct alkylheteroarylation of alkenes with cyclic and acyclic ethers via distal heteroaryl ipso-migration has been accomplished through the design of a photoredox-mediated C–H functionalization pathway.
Collapse
Affiliation(s)
- Lijun Gu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- State Ethnic Affairs Commission & Ministry of Education
- Yunnan Minzu University
- Kunming
- China
| | - Ying Gao
- Merck Sharp & Dohme R & D (China) Company Limited
- Beijing 100012
- China
| | - Xianhong Ai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- State Ethnic Affairs Commission & Ministry of Education
- Yunnan Minzu University
- Kunming
- China
| | - Cheng Jin
- New United Group Company Limited
- Changzhou
- China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- State Ethnic Affairs Commission & Ministry of Education
- Yunnan Minzu University
- Kunming
- China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- State Ethnic Affairs Commission & Ministry of Education
- Yunnan Minzu University
- Kunming
- China
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan
- Yunnan Minzu University
- Kunming
- China
| |
Collapse
|