1
|
Bao S, Shen T, Shabahang M, Bai G, Li L. Enzymatic Synthesis of Disialyllacto-N-Tetraose (DSLNT) and Related Human Milk Oligosaccharides Reveals Broad Siglec Recognition of the Atypical Neu5Acα2-6GlcNAc Motif. Angew Chem Int Ed Engl 2024; 63:e202411863. [PMID: 39223086 PMCID: PMC11631665 DOI: 10.1002/anie.202411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, describe the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration of their structure-function relationships using glycan microarrays, revealing broad yet distinct recognition by Siglecs of the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insight for the functional study and potential applications of Siglecs and HMOs.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - MohammadHossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guitao Bai
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Tseng HK, Lee TY, Chiang YC, Kuo WH, Tseng HW, Wang HK, Ni CK, Lin CC. Versatile Strategy for the Chemoenzymatic Synthesis of Branched Human Milk Oligosaccharides Containing the Lacto-N-Biose Motif. Angew Chem Int Ed Engl 2024:e202419021. [PMID: 39589188 DOI: 10.1002/anie.202419021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity. Although a few systematic synthetic strategies have emerged, many of them rely on labor-intensive chemical methodologies or exploit the substrate specificity of human N-acetylglucosaminyltransferase 2 (hGCNT2). In this study, we capitalized on the substrate promiscuities of hGCNT2 and bacterial glycosyltransferases (GTs) to construct a universal tetrasaccharide core in a highly efficient manner. This core was systematically and flexibly extended to generate diverse branched HMOs utilizing the promiscuity of bacterial GTs coupled with N-trifluoroacetyl glucosamine (GlcNTFA), which facilitated sugar chain elongation. The GlcNTFA residues were subsequently converted into various N-modified glucosamines through straightforward chemical manipulations to modulate the activities of additional GTs during glycan extension. These masked amino groups were ultimately reverted to N-acetyl groups, facilitating the synthesis of a broad range of asymmetric and multiantennary HMOs featuring LNB moieties, including many previously inaccessible structures.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Ching Chiang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
3
|
Du Z, Li Z, Guang C, Zhu Y, Mu W. Recent advances of 3-fucosyllactose in health effects and production. Arch Microbiol 2024; 206:378. [PMID: 39143417 DOI: 10.1007/s00203-024-04104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Human milk oligosaccharides (HMOs) have been recognized as gold standard for infant development. 3-Fucosyllactose (3-FL), being one of the Generally Recognized as Safe HMOs, represents a core trisaccharide within the realm of HMOs; however, it has received comparatively less attention in contrast to extensively studied 2'-fucosyllactose. The objective of this review is to comprehensively summarize the health effects of 3-FL, including its impact on gut microbiota proliferation, antimicrobial effects, immune regulation, antiviral protection, and brain maturation. Additionally, the discussion also covers the commercial application and regulatory approval status of 3-FL. Lastly, an organized presentation of large-scale production methods for 3-FL aims to provide a comprehensive guide that highlights current strategies and challenges in optimization.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Pressley SR, McGill AS, Luu B, Atsumi S. Recent Advances in the Microbial Production of Human Milk Oligosaccharides. Curr Opin Food Sci 2024; 57:101154. [PMID: 39399461 PMCID: PMC11469638 DOI: 10.1016/j.cofs.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are naturally occurring, non-digestible sugars found in human milk. They have recently become a popular target for industrial synthesis due to their positive effects on the developing gut microbiome and immune system of infants. Microbial synthesis has shown great promise in driving down the cost of these sugars and making them more available for consumers and researchers. The application of common metabolic engineering techniques such as gene knockouts, gene overexpression, and expression of exogenous genes has enabled the rational design of whole-cell biocatalysts which can produce increasingly complex HMOs. Herein, we discuss how these strategies have been applied to produce a variety of sugars from sialylated to complex fucosylated HMOs. With increased availability of HMOs, more research can be done to understand their beneficial effects.
Collapse
Affiliation(s)
- Shannon R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Alex S. McGill
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Bryant Luu
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Efficient Biosynthesis of Difucosyllactose via De Novo GDP-l-Fucose Pathway in Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4367-4375. [PMID: 38374607 DOI: 10.1021/acs.jafc.3c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Difucosyllactose (DFL) is an important component of human milk oligosaccharides (HMOs) and has significant benefits for the growth and development of infants. So far, a few microbial cell factories have been constructed for the production of DFL, which still have problems of low production and high cost. Herein, a high-level de novo pathway DFL-producing strain was constructed by multistep optimization strategies in Escherichia coli BL21star(DE3). We first efficiently synthesized the intermediate 2'-fucosyllactose (2'-FL) in E. coli BL21star(DE3) by the advisable stepwise strategy. The truncated α-1,3/4-fucosyltransferase (Hp3/4FT) was then introduced into the engineered strain to achieve de novo biosynthesis of DFL. ATP-dependent protease (Lon) and GDP-mannose hydrolase (NudK) were deleted, and mannose-6-phosphate isomerase (ManA) was overexpressed to improve GDP-l-fucose accumulation. The regulator RcsA was overexpressed to fine-tune the expression level of pathway genes, thereby increasing the synthesis of DFL. The final strain produced 6.19 g/L of DFL in the shake flask and 33.45 g/L of DFL in the 5 L fermenter, which were the highest reported titers so far. This study provides a more economical, sustainable, and effective strategy to produce the fucosylated human milk oligosaccharides (HMOs).
Collapse
Affiliation(s)
- Shanquan Liang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Zi He
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
6
|
Xie Y, Wu X, Fu C, Duan H, Shi J, Blamey JM, Sun J. Rational Design of an α-1,3-Fucosyltransferase for the Biosynthesis of 3-Fucosyllactose in Bacillus subtilis ATCC 6051a via De Novo GDP-l-Fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1178-1189. [PMID: 38183288 DOI: 10.1021/acs.jafc.3c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
3-Fucosyllactose (3-FL) is an important oligosaccharide and nutrient in breast milk that can be synthesized in microbial cells by α-1,3-fucosyltransferase (α-1,3-FucT) using guanosine 5'-diphosphate (GDP)-l-fucose and lactose as substrates. However, the catalytic efficiency of known α-1,3-FucTs from various sources was limited due to their low solubility. To enhance the microbial production of 3-FL, the efficiencies of α-1,3-FucTs were evaluated and in Bacillus subtilis (B. subtilis) chassis cells that had been endowed with a heterologous synthetic pathway for GDP-l-fucose, revealing that the activity of FucTa from Helicobacter pylori (H. pylori) was higher than that of any of other reported homologues. To further improve the catalytic performance of FucTa, a rational design approach was employed, involving intracellular evaluation of the mutational sites of M32 obtained through directed evolution, analysis of the ligand binding site diversity, and protein structure simulation. Among the obtained variants, the FucTa-Y218 K variant exhibited the highest 3-FL yield, reaching 7.55 g/L in the shake flask growth experiment, which was 3.48-fold higher than that achieved by the wild-type enzyme. Subsequent fermentation optimization in a 5 L bioreactor resulted in a remarkable 3-FL production of 36.98 g/L, highlighting the great prospects of the designed enzyme and the strains for industrial applications.
Collapse
Affiliation(s)
- Yukang Xie
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Cong Fu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Duan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Jenny M Blamey
- Fundación Biociencia, José Domingo Cañas, 2280 Ñuñoa, Santiago, Chile
- Facultad de Química Y Biología, Universidad de Santiago de Chile, 3363 Alameda, Estación Central, Santiago, Chile
| | - Junsong Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
7
|
Yang L, Zhu Y, Meng J, Zhang W, Mu W. Recent progress in fucosylated derivatives of lacto- N-tetraose and lacto- N-neotetraose. Crit Rev Food Sci Nutr 2023; 64:10384-10396. [PMID: 37341681 DOI: 10.1080/10408398.2023.2224431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention owing to their unique physiological functions. Two important tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), are core structures of HMOs. Their safety has been evaluated and they can be added to infant formula as functional ingredients. The fucosylated derivatives of LNT and LNnT, mainly lacto-N-fucopentaose (LNFP) I, LNFP II, LNFP III, and lacto-N-difucohexaose I, exhibit prominent physiological characteristics, including modificating the intestinal microbiota, immunomodulation, anti-bacterial activities, and antiviral infection. However, they have received lesser attention than 2'-fucosyllactose. As precursors, LNT and LNnT are connected to one or two fucosyl units through α1,2/3/4 glycosidic bonds, forming a series of compounds with complex structures. These complex fucosylated oligosaccharides can be biologically synthesized using enzymatic and cell factory approaches. This review summarizes the occurrence, physiological effects, and biosynthesis of fucosylated LNT and LNnT derivatives and their future development.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Chen Y, Wen Y, Zhu Y, Chen Z, Mu W, Zhao C. Synthesis of bioactive oligosaccharides and their potential health benefits. Crit Rev Food Sci Nutr 2023; 64:10319-10331. [PMID: 37341126 DOI: 10.1080/10408398.2023.2222805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Oligosaccharides, a low polymerization degree of carbohydrate, possess various physiological activities, such as anti-diabetes, anti-obesity, anti-aging, anti-viral, and gut microbiota regulation, having a widely used in food and medical fields. However, due to the limited natural oligosaccharides, many un-natural oligosaccharides from complex polysaccharides are being studied for amplifying the available pool of oligosaccharides. More recently, various oligosaccharides were developed by using several artificial strategies, such as chemical degradation, enzyme catalysis, and biosynthesis, then they can be applied in various sectors. Moreover, it has gradually become a trend to use biosynthesis to realize the synthesis of oligosaccharides with clear structure. Emerging research has found that un-natural oligosaccharides exert more comprehensive effects against various human diseases through multiple mechanisms. However, these oligosaccharides from various routes have not been critical reviewed and summarized. Therefore, the purpose of this review is to present the various routes of oligosaccharides preparations and healthy effects, with a focus on diabetes, obesity, aging, virus, and gut microbiota. Additionally, the application of multi-omics for these natural and un-natural oligosaccharides has also been discussed. Especially, the multi-omics are needed to apply in various disease models to find out various biomarkers to respond to the dynamic change process of oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Chen Y, Zhu Y, Wang H, Chen R, Liu Y, Zhang W, Mu W. De novo biosynthesis of 2'-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ1,2-fucosyltransferase from Azospirillum lipoferum. BIORESOURCE TECHNOLOGY 2023; 374:128818. [PMID: 36868425 DOI: 10.1016/j.biortech.2023.128818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Human milk oligosaccharides are complex, indigestible oligosaccharides that provide ideal nutrition for infant development. Here, 2'-fucosyllactose was efficiently produced in Escherichia coli by using a biosynthetic pathway. For this, both lacZ and wcaJ (encoding β-galactosidase and UDP-glucose lipid carrier transferase, respectively) were deleted to enhance the 2'-fucosyllactose biosynthesis. To further enhance 2'-fucosyllactose production, SAMT from Azospirillum lipoferum was inserted into the chromosome of the engineered strain, and the native promoter was replaced with a strong constitutive promoter (PJ23119). The titer of 2'-fucosyllactose was increased to 8.03 g/L by introducing the regulators rcsA and rcsB into the recombinant strains. Compared to wbgL-based strains, only 2'-fucosyllactose was produced in SAMT-based strains without other by-products. Finally, the highest titer of 2'-fucosyllactose reached 112.56 g/L in a 5 L bioreactor by fed-batch cultivation, with a productivity of 1.10 g/L/h and a yield of 0.98 mol/mol lactose, indicating a strong potential in industrial production.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
10
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
11
|
Microbial Production of Human Milk Oligosaccharides. Molecules 2023; 28:molecules28031491. [PMID: 36771155 PMCID: PMC9921495 DOI: 10.3390/molecules28031491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are complex nonnutritive sugars present in human milk. These sugars possess prebiotic, immunomodulatory, and antagonistic properties towards pathogens and therefore are important for the health and well-being of newborn babies. Lower prevalence of breastfeeding around the globe, rising popularity of nutraceuticals, and low availability of HMOs have inspired efforts to develop economically feasible and efficient industrial-scale production platforms for HMOs. Recent progress in synthetic biology and metabolic engineering tools has enabled microbial systems to be a production system of HMOs. In this regard, the model organism Escherichia coli has emerged as the preferred production platform. Herein, we summarize the remarkable progress in the microbial production of HMOs and discuss the challenges and future opportunities in unraveling the scope of production of complex HMOs. We focus on the microbial production of five HMOs that have been approved for their commercialization.
Collapse
|
12
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
13
|
Sugita T, Sampei S, Koketsu K. Efficient production of lacto-N-fucopentaose III in engineered Escherichia coli using α1,3-fucosyltransferase from Parabacteroides goldsteinii. J Biotechnol 2023; 361:110-118. [PMID: 36509384 DOI: 10.1016/j.jbiotec.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Lacto-N-fucopentaose III (LNFP III) is a human milk oligosaccharide (HMO) with potential health benefits in infants, including in immune development and modulation of the intestinal environment. Low-cost fermentative production of various HMOs from lactose by engineered Escherichia coli has attracted attention, but few reports have investigated long-chain HMO production, such as of the pentasaccharide LNFP III. LNFP III is synthesized by α1,3-fucosyltransfer reaction to the glucosamine (GlcNAc) moiety in the lacto-N-neotetraose (LNnT) skeleton by α1,3-fucosyltransferase (α1,3-FucT). However, the known α1,3-FucTs also transfer fucose to the reducing terminal glucose moiety of LNnT or the starting material lactose, resulting in various byproducts. Here, we found a useful α1,3-FucT from Parabacteroides goldsteinii (PgsFucT), which is only reactive for GlcNAc in the N-acetyllactosamine (LacNAc) skeleton in vivo. On the basis of sequence alignment with a FucT of known structure, we also generated α1,3-FucT variants with altered reactivity for LacNAc or lactose. An E. coli strain heterologously expressing PgsFucT accumulated 3.84 g/L of LNFP III after 48 h of culture in a 3-L jar-fermenter. The amounts of various byproduct sugars were remarkably decreased compared with a strain expressing the previously characterized α1,3-fucT from Bacteroides fragilis.
Collapse
Affiliation(s)
- Tomotoshi Sugita
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Sotaro Sampei
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kento Koketsu
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Zheng J, Xu H, Fang J, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym 2022; 291:119564. [DOI: 10.1016/j.carbpol.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
|
16
|
Bai Y, Yang X, Yu H, Chen X. Substrate and Process Engineering for Biocatalytic Synthesis and Facile Purification of Human Milk Oligosaccharides. CHEMSUSCHEM 2022; 15:e202102539. [PMID: 35100486 PMCID: PMC9272545 DOI: 10.1002/cssc.202102539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Indexed: 05/08/2023]
Abstract
Innovation in process development is essential for applying biocatalysis in industrial and laboratory production of organic compounds, including beneficial carbohydrates such as human milk oligosaccharides (HMOs). HMOs have attracted increasing attention for their potential application as key ingredients in products that can improve human health. To efficiently access HMOs through biocatalysis, a combined substrate and process engineering strategy is developed, namely multistep one-pot multienzyme (MSOPME) design. The strategy allows access to a pure tagged HMO in a single reactor with a single C18-cartridge purification process, despite the length of the target. Its efficiency is demonstrated in the high-yielding (71-91 %) one-pot synthesis of twenty tagged HMOs (83-155 mg), including long-chain oligosaccharides with or without fucosylation or sialylation up to nonaoses from a lactoside without the isolation of the intermediate oligosaccharides. Gram-scale synthesis of an important HMO derivative - tagged lacto-N-fucopentaose-I (LNFP-I) - proceeds in 84 % yield. Tag removal is carried out in high efficiency (94-97 %) without the need for column purification to produce the desired natural HMOs with a free reducing end. The method can be readily adapted for large-scale synthesis and automation to allow quick access to HMOs, other glycans, and glycoconjugates.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| |
Collapse
|
17
|
Li Z, Zhu Y, Ni D, Zhang W, Mu W. Occurrence, functional properties, and preparation of 3-fucosyllactose, one of the smallest human milk oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:9364-9378. [PMID: 35438024 DOI: 10.1080/10408398.2022.2064813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human milk oligosaccharides (HMOs) are receiving wide interest and high attention due to their health benefits, especially for newborns. The HMOs-fortified products are expected to mimic human milk not only in the kinds of added oligosaccharides components but also the appropriate proportion between these components, and further provide the nutrition and physiological effects of human milk to newborns as closely as possible. In comparison to intensively studied 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL) has less attention in almost all respects. Nerveless, 3-FL naturally occurs in breast milk and increases roughly over the course of lactation with a nonnegligible content, and plays an irreplaceable role in human milk and delivers functional properties to newborns. According to the safety evaluation, 3-FL shows no acute oral toxicity, genetic toxicity, and subchronic toxicity. It has been approved as generally recognized as safe (GRAS). Biological production of 3-FL can be realized by enzymatic and cell factory approaches. The α1,3- or α1,3/4-fucosyltransferase is the key enzyme for 3-FL biosynthesis. Various metabolic engineering strategies have been applied to enhance 3-FL yield using cell factory approach. In conclusion, this review gives an overview of the recent scientific literatures regarding occurrence, bioactive properties, safety evaluation, and biotechnological preparation of 3-FL.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Heine V, Pelantová H, Bojarová P, Křen V, Elling L. Targeted fucosylation of glycans with engineered bacterial fucosyltransferase variants. ChemCatChem 2022. [DOI: 10.1002/cctc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Viktoria Heine
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Helena Pelantová
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Pavla Bojarová
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Vladimír Křen
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Lothar Elling
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering Pauwelsstr. 20 52074 Aachen GERMANY
| |
Collapse
|
19
|
Lee H, Shin DJ, Han K, Chin Y, Park JP, Park K, Choi C, Park B, Kim S, Kim S. Simultaneous production of 2′‐fucosyllactose and difucosyllactose by engineered
Escherichia coli
with high secretion efficiency. Biotechnol J 2022; 17:e2100629. [DOI: 10.1002/biot.202100629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hyun‐Jae Lee
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| | - Dong Joo Shin
- Department of Agricultural Biotechnology Seoul National University Seoul Republic of Korea
| | - Kanghee Han
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| | - Young‐Wook Chin
- Research Group of Traditional Food Korea Food Research Institute Wanju Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology Chung‐Ang University Anseong‐si Seoul Gyeonggi‐do Republic of Korea
| | - Chang‐Hyung Choi
- Division of Cosmetic Science and Technology Daegu Haany University 1 Haanydaero, Gyeongsan‐si Gyeongsangbuk‐do Republic of Korea
| | - Bo‐Ram Park
- Department of Agro‐food Resources National Institute of Agricultural Sciences Rural Development Administration Wanju Republic of Korea
| | - Soo‐Jung Kim
- Department of Integrative Food Bioscience and Biotechnology Chonnam National University Gwangju Republic of Korea
| | - Sun‐Ki Kim
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| |
Collapse
|
20
|
Fang W, Zhong K, Cheng J, Liu X, Liu C, Wang Z, Cao H. Capture‐Release
Strategy Facilitates Rapid Enzymatic Assembly of Oligosaccharides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenyuan Fang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Kan Zhong
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy Ocean University of China Qingdao Shandong 266003 China
| | - Jiansong Cheng
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Xian‐Wei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Chang‐Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an Shaanxi 710069 China
| | - Hongzhi Cao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy Ocean University of China Qingdao Shandong 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao Shandong 266237 China
| |
Collapse
|
21
|
Xia H, Ye J, Cao H, Liu X, Zhang Y, Liu CC. Enzymatic modular assembly of hybrid Lewis antigens. Org Biomol Chem 2021; 19:8041-8048. [PMID: 34473187 DOI: 10.1039/d1ob01579f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzymatic synthesis of hybrid Lewis antigens including KH-1 (Lewis y-Lewis x-Lactose, Ley-Lex-Lac), Lewis a-Lewis x-Lactose (Lea-Lex-Lac), and Lewis b-Lewis x-Lactose (Leb-Lex-Lac) has been achieved using a facile enzymatic modular assembly strategy. Starting from a readily available tetrasaccharide, 3 complex hybrid Lewis antigens were achieved in over 40% total yields in less than 5 linear steps of sequential enzymatic glycosylation using 6 enzyme modules. The regio-selective fucosylation was achieved by simply controlling the donor-acceptor ratio. This strategy provides an easy access to these biologically important complex hybrid Lewis antigens at preparative scales.
Collapse
Affiliation(s)
- Hui Xia
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Jinfeng Ye
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianwei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Yan Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
22
|
Zhu Y, Luo G, Wan L, Meng J, Lee SY, Mu W. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- N-tetraose, and lacto- N-neotetraose. Crit Rev Biotechnol 2021; 42:578-596. [PMID: 34346270 DOI: 10.1080/07388551.2021.1944973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human milk oligosaccharides (HMOs) have recently attracted ever-increasing interest because of their versatile physiological functions. In HMOs, two tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), constitute the essential components, each accounting 6% (w/w) of total HMOs. Also, they serve as core structures for fucosylation and sialylation, generating functional derivatives and elongation generating longer chains of core structures. LNT, LNnT, and their fucosylated and/or sialylated derivatives account for more than 30% (w/w) of total HMOs. For derivatization, LNT and LNnT can be modified into a series of complex fucosylated and/or sialylated HMOs by transferring fucose residues at α1,2-, α1,3-, and α1,3/4-linkage and/or sialic acid residues at α2,3- and α2,6-linkage. Such structural diversity allows these HMOs to possess great commercial value and an application potential in the food and pharmaceutical industries. In this review, we first elaborate the physiological functions of these tetrasaccharides and derivatives. Next, we extensively review recent developments in the biosynthesis of LNT, LNnT, and their derivatives in vitro and in vivo by employing advanced enzymatic reaction systems and metabolic engineering strategies. Finally, future perspectives in the synthesis of these HMOs using enzymatic and metabolic engineering approaches are presented.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Zhang A, Sun L, Bai Y, Yu H, McArthur JB, Chen X, Atsumi S. Microbial production of human milk oligosaccharide lactodifucotetraose. Metab Eng 2021; 66:12-20. [PMID: 33812022 DOI: 10.1016/j.ymben.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Human milk oligosaccharides (HMOs) are potent bioactive compounds that modulate neonatal health and are of interest for development as potential drug treatments for adult diseases. The potential of these molecules, their limited access from natural sources, and difficulty in large-scale isolation of individual HMOs for studies and applications have motivated the development of chemical syntheses and in vitro enzymatic catalysis strategies. Whole cell biocatalysts are emerging as alternative self-regulating production platforms that have the potential to reduce the cost for enzymatic synthesis of HMOs. Whole cell biocatalysts for the production of short-chained, linear and small monofucosylated HMOs have been reported but those for fucosylated structures with higher complexity have not been explored. In this study, we established a strategy for producing a difucosylated HMO, lactodifucotetraose (LDFT), from lactose and L-fucose in Escherichia coli. We used two bacterial fucosyltransferases with narrow acceptor selectivity to drive the sequential fucosylation of lactose and intermediate 2'-fucosyllactose (2'-FL) to produce LDFT. Deletion of substrate degradation pathways that decoupled cellular growth from LDFT production, enhanced expression of native substrate transporters and modular induction of the genes in the LDFT biosynthetic pathway allowed complete conversion of lactose into LDFT and minor quantities of the side product 3-fucosyllactose (3-FL). Overall, 5.1 g/L of LDFT was produced from 3 g/L lactose and 3 g/L L-fucose in 24 h. Our results demonstrate promising applications of engineered microbial biosystems for the production of multi-fucosylated HMOs for biochemical studies.
Collapse
Affiliation(s)
- Angela Zhang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lei Sun
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Mahour R, Marichal‐Gallardo PA, Rexer TFT, Reichl U. Multi‐enzyme Cascades for the
In Vitro
Synthesis of Guanosine Diphosphate L‐Fucose. ChemCatChem 2021. [DOI: 10.1002/cctc.202001854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Reza Mahour
- Department of Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg Germany
| | - Pavel A. Marichal‐Gallardo
- Department of Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg Germany
| | - Thomas F. T. Rexer
- Department of Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg
- Otto-von-Guericke-University Magdeburg Chair of Bioprocess Engineering Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
26
|
Huang YT, Su YC, Wu HR, Huang HH, Lin EC, Tsai TW, Tseng HW, Fang JL, Yu CC. Sulfo-Fluorous Tagging Strategy for Site-Selective Enzymatic Glycosylation of para-Human Milk Oligosaccharides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Chia Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center at National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|
27
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
28
|
Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, Salazar-Pereda V, Bautista-Ávila M, Cruz-Guerrero AE, Flores-Aguilar JF, González-Olivares LG. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci Nutr 2020; 62:181-214. [DOI: 10.1080/10408398.2020.1813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel Pérez-Escalante
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Sergio Alatorre-Santamaría
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Araceli Castañeda-Ovando
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Verónica Salazar-Pereda
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Mirandeli Bautista-Ávila
- Universidad Autónoma del Estado de Hidalgo. Área Académica de Farmacia, Instituto de Ciencias de la Salud. Ex-Hacienda la Concepción. San Agustín Tlaxiaca, Hidalgo, México
| | - Alma Elizabeth Cruz-Guerrero
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Juan Francisco Flores-Aguilar
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Luis Guillermo González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
29
|
Liu P, Zhang H, Wang Y, Chen X, Jin L, Xu L, Xiao M. Screening and characterization of an α-L-fucosidase from Bacteroides fragilis NCTC9343 for synthesis of fucosyl-N-acetylglucosamine disaccharides. Appl Microbiol Biotechnol 2020; 104:7827-7840. [PMID: 32715363 DOI: 10.1007/s00253-020-10759-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Fucosyl-N-acetylglucosamine disaccharides are present in many biologically important oligosaccharides, such as human milk oligosaccharides, Lewis carbohydrate antigens, and glycans on cell-surface glycoconjugate receptors, and thus have vast potential for infant formulas, prebiotics, and pharmaceutical applications. In this work, in order to screen biocatalysts for enzymatic synthesis of fucosyl-N-acetylglucosamine disaccharides, we performed sequence analysis of 12 putative and one known α-L-fucosidases of Bacteroides fragilis NCTC9343 and constructed a phylogenetic tree of the nine GH29 α-L-fucosidases. After that, five GH29A α-L-fucosidases were cloned, and four of them were successfully heterogeneous expressed and screened for transglycosylation activity, and a GH29A α-L-fucosidase (BF3242) that synthesized a mix of Fuc-α-1,3/1,6-GlcNAc disaccharides using pNPαFuc as donor and GlcNAc as acceptor was characterized. The effects of initial substrate concentration, pH, temperature, and reaction time on its transglycosylation activity were studied in detail. Under the optimum conditions of 0.05 U/mL enzyme, 20 mM pNPαFuc, and 500 mM GlcNAc in sodium buffer (pH 7.5) at 37 °C for 45 min, BF3242 efficiently synthesized Fuc-α-1,3/1,6-GlcNAc at a maximum yield of 79.0% with the ratio of 0.48 for 1,3/1,6. The molecular dynamics simulation analysis revealed that Loop-4 (His220-Ser245) in the putative 3D model of BF3242 displayed significant changes throughout the thermal simulations, might being responsible for the changes in the ratio of two regioisomeric products at different temperatures. This work provided not only a potential synthetic tool for enzymatic synthesis of fucosyl-N-acetylglucosamine disaccharides but also a possibility for the formation of regioisomeric products in glycosidase-catalyzed transglycosylation. KEY POINTS: • Sequence analysis of α-L-fucosidases of Bacteroides fragilis NCTC9343 • Obtainment of an α-L-fucosidase with high transglycosylation activity • Explanation why temperature affected the ratio of two regioisomeric products.
Collapse
Affiliation(s)
- Peng Liu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Huaqin Zhang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yuying Wang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,Department of Clinical Laboratory Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, 250001, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
30
|
Long M, Ní Cheallaigh A, Reihill M, Oscarson S, Lahmann M. Synthesis of type 1 Lewis b hexasaccharide antigen structures featuring flexible incorporation of l-[U- 13C 6]-fucose for NMR binding studies. Org Biomol Chem 2020; 18:4452-4458. [PMID: 32478348 DOI: 10.1039/d0ob00426j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While 13C-labelled proteins are common tools in NMR studies, lack of access to 13C-labelled carbohydrate structures has restricted their use. l-Fucose is involved in a wide range of physiological and pathophysiological processes in mammalian organisms. Here, l-[U-13C6]-Fuc labelled type I Lewis b (Leb) structures have been synthesised for use in NMR binding studies with the Blood-group Antigen Binding Adhesin (BabA), a membrane-bound protein from the bacterium Helicobacter pylori. As part of this work, an efficient synthesis of a benzylated l-[U-13C6]-Fuc thioglycoside donor from l-[U-13C6]-Gal has been developed. The design and synthesis of an orthogonally protected tetrasaccharide precursor enabled controlled introduction of one or two 13C-labelled or non-labelled fucosyl residues prior to global deprotection. NMR analysis showed that it is straightforward to assign the anomeric centres as well as the H-5 positions to the individual fucosyl residues which are relevant for NMR binding studies.
Collapse
Affiliation(s)
- Mark Long
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Aisling Ní Cheallaigh
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, IE
| | - Mark Reihill
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, IE
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, IE
| | - Martina Lahmann
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
31
|
Li BH, Ye XS. Recent advances in glycan synthesis. Curr Opin Chem Biol 2020; 58:20-27. [PMID: 32480314 DOI: 10.1016/j.cbpa.2020.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Carbohydrates play important roles in life science, but their synthesis is always hampered by their complicated chemical structures. Scientists have never stopped trying to solve the problem of glycan synthesis from various aspects. Here a brief overview of recent progress in glycan synthesis, including chemical approaches, chemoenzymatic approaches, and automated synthesis, will be discussed, focusing on the efficiency of new glycosylation methods, the stereoselectivity of coupled products, and their applications in the assembly of complex glycan chains.
Collapse
Affiliation(s)
- Bo-Han Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
32
|
Tian G, Hu J, Qin C, Li L, Zou X, Cai J, Seeberger PH, Yin J. Chemical Synthesis and Immunological Evaluation of
Helicobacter pylori
Serotype O6 Tridecasaccharide O‐Antigen Containing a
dd
‐Heptoglycan. Angew Chem Int Ed Engl 2020; 59:13362-13370. [PMID: 32363752 DOI: 10.1002/anie.202004267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
33
|
Tian G, Hu J, Qin C, Li L, Zou X, Cai J, Seeberger PH, Yin J. Chemical Synthesis and Immunological Evaluation of
Helicobacter pylori
Serotype O6 Tridecasaccharide O‐Antigen Containing a
dd
‐Heptoglycan. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
34
|
Gloster TM. Exploitation of carbohydrate processing enzymes in biocatalysis. Curr Opin Chem Biol 2020; 55:180-188. [PMID: 32203896 DOI: 10.1016/j.cbpa.2020.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Exploitation of enzymes in biocatalytic processes provides scope both in the synthesis and degradation of molecules. Enzymes have power not only in their catalytic efficiency, but their chemoselectivity, regioselectivity, and stereoselectivity means the reactions they catalyze are precise and reproducible. Focusing on carbohydrate processing enzymes, this review covers advances in biocatalysis involving carbohydrates over the last 2-3 years. Given the notorious difficulties in the chemical synthesis of carbohydrates, the use of enzymes for synthesis has potential for significant impact in the future. The use of catabolic enzymes in the degradation of biomass, which can be exploited in the production of biofuels to provide a sustainable and greener source of energy, and the synthesis of molecules that have a range of applications including in the pharmaceutical and food industries will be explored.
Collapse
Affiliation(s)
- Tracey M Gloster
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
35
|
Zhong C, Duić B, Bolivar JM, Nidetzky B. Three‐Enzyme Phosphorylase Cascade Immobilized on Solid Support for Biocatalytic Synthesis of Cello−oligosaccharides. ChemCatChem 2020. [DOI: 10.1002/cctc.201901964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Božidar Duić
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
36
|
McArthur JB, Yu H, Chen X. A Bacterial β1-3-Galactosyltransferase Enables Multigram-Scale Synthesis of Human Milk Lacto- N-tetraose (LNT) and Its Fucosides. ACS Catal 2019; 9:10721-10726. [PMID: 33408950 DOI: 10.1021/acscatal.9b03990] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β1-3-Linked galactosides such as Galβ1‒3GlcNAcβOR are common carbohydrate motifs found in human milk oligosaccharides (HMOSs), glycolipids, and glycoproteins. Efficient and scalable enzymatic syntheses of these structures have proven challenging due to the lack of access to a highly active β1‒3-galactosyltransferase (β3GalT) in large amounts. Previously reported E. coli β3GalT (EcWbgO) has been identified as a limiting factor for producing a β1-3-galactose-terminated human milk oligosaccharide lacto-N-tetraose (LNT) by fermentation. Here we report the identification of an EcWbgO homolog from C. violaceum (Cvβ3GalT) which showed a high efficiency in catalyzing the formation of LNT from lacto-N-triose (LNT II). With the highly active Cvβ3GalT, multigram-scale (>10 gram) synthesis of LNT from lactose was achieved using a sequential one-pot multienzyme (OPME) glycosylation process. The access to Cvβ3GalT enabled enzymatic synthesis of several fucosylated HMOSs with or without further sialylation including LNFP II, S-LNF II, LNDFH I, LNFP V, and DiFuc-LNT. Among these, LNFP V and DiFuc-LNT would not be accessible by enzymatic synthesis if an active β3GalT were not available.
Collapse
Affiliation(s)
- John B. McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
37
|
Huang HH, Fang JL, Wang HK, Sun CY, Tsai TW, Huang YT, Kuo CY, Wang YJ, Liao CC, Yu CC. Substrate Characterization of Bacteroides fragilis α1,3/4-Fucosyltransferase Enabling Access to Programmable One-Pot Enzymatic Synthesis of KH-1 Antigen. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chih-Yuan Sun
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Cheng-Yu Kuo
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Jyun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Chun Liao
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|
38
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
39
|
Tsai TW, Fang JL, Liang CY, Wang CJ, Huang YT, Wang YJ, Li JY, Yu CC. Exploring the Synthetic Application of Helicobacter pylori α1,3/4-Fucosyltransferase FucTIII toward the Syntheses of Fucosylated Human Milk Glycans and Lewis Antigens. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Kooner AS, Yu H, Chen X. Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Front Immunol 2019; 10:2004. [PMID: 31555264 PMCID: PMC6724515 DOI: 10.3389/fimmu.2019.02004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.
Collapse
Affiliation(s)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
41
|
Bai J, Wu Z, Sugiarto G, Gadi MR, Yu H, Li Y, Xiao C, Ngo A, Zhao B, Chen X, Guan W. Biochemical characterization of Helicobacter pylori α1-3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydr Res 2019; 480:1-6. [PMID: 31132553 DOI: 10.1016/j.carres.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Fucosylated human milk oligosaccharides (HMOs) have important biological functions. Enzymatic synthesis of such compounds requires robust fucosyltransferases. A C-terminal 66-amino acid truncated version of Helicobacter pylori α1-3-fucosyltransferase (Hp3FT) is a good candidate. Hp3FT was biochemically characterized to identify optimal conditions for enzymatic synthesis of fucosides. While N-acetyllactosamine (LacNAc) and lactose were both suitable acceptors, the former is preferred. At a low guanosine 5'-diphospho-β-L-fucose (GDP-Fuc) to acceptor ratio, Hp3FT selectively fucosylated LacNAc. Based on these enzymatic characteristics, diverse fucosylated HMOs, including 3-fucosyllactose (3-FL), lacto-N-fucopentaose (LNFP) III, lacto-N-neofucopentaose (LNnFP) V, lacto-N-neodifucohexaose (LNnDFH) II, difuco- and trifuco-para-lacto-N-neohexaose (DF-paraLNnH and TF-para-LNnH), were synthesized enzymatically by varying the ratio of the donor and acceptor as well as controlling the order of multiple glycosyltransferase-catalyzed reactions.
Collapse
Affiliation(s)
- Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhigang Wu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Cong Xiao
- Department of Chemistry, Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Alice Ngo
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
42
|
|
43
|
Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. BIOMICROFLUIDICS 2019; 13:034106. [PMID: 31123538 PMCID: PMC6510662 DOI: 10.1063/1.5088517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl β-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.
Collapse
Affiliation(s)
| | | | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514)-848-2424x7579
| |
Collapse
|
44
|
Verkhnyatskaya S, Ferrari M, de Vos P, Walvoort MTC. Shaping the Infant Microbiome With Non-digestible Carbohydrates. Front Microbiol 2019; 10:343. [PMID: 30858844 PMCID: PMC6397869 DOI: 10.3389/fmicb.2019.00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Natural polysaccharides with health benefits are characterized by a large structural diversity and differ in building blocks, linkages, and lengths. They contribute to human health by functioning as anti-adhesives preventing pathogen adhesion, stimulate immune maturation and gut barrier function, and serve as fermentable substrates for gut bacteria. Examples of such beneficial carbohydrates include the human milk oligosaccharides (HMOs). Also, specific non-digestible carbohydrates (NDCs), such as galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are being produced with this purpose in mind, and are currently added to infant formula to stimulate the healthy development of the newborn. They mimic some functions of HMO, but not all. Therefore, many research efforts focus on identification and production of novel types of NDCs. In this review, we give an overview of the few NDCs currently available [GOS, FOS, polydextrose (PDX)], and outline the potential of alternative oligosaccharides, such as pectins, (arabino)xylo-oligosaccharides, and microbial exopolysaccharides (EPS). Moreover, state-of-the-art techniques to generate novel types of dietary glycans, including sialylated GOS (Sia-GOS) and galactosylated chitin, are presented as a way to obtain novel prebiotic NDCs that help shaping the infant microbiome.
Collapse
Affiliation(s)
- Stella Verkhnyatskaya
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- University Medical Center Groningen, Groningen, Netherlands
| | - Marthe T. C. Walvoort
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
45
|
Tasnima N, Yu H, Yan X, Li W, Xiao A, Chen X. Facile chemoenzymatic synthesis of Lewis a (Le a) antigen in gram-scale and sialyl Lewis a (sLe a) antigens containing diverse sialic acid forms. Carbohydr Res 2018; 472:115-121. [PMID: 30562693 DOI: 10.1016/j.carres.2018.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
An efficient streamlined chemoenzymatic approach has been developed for gram-scale synthesis of Lewis a angtigen (LeaβProN3) and a library of sialyl Lewis a antigens (sLeaβProN3) containing different sialic acid forms. Intially, commercially available inexpensive N-acetylglucosamine (GlcNAc) was converted to its N'-glycosyl p-toluenesulfonohydrazide in one step. Followed by chemical glycosylation, GlcNAcβProN3 was synthesized using this protecting group-free method in high yield (82%). Sequential one-pot multienzyme (OPME) β1-3-galactosylation of GlcNAcβProN3 followed by OPME α1-4-fucosylation reactions produced target LeaβProN3 in gram-scale. Structurally diverse sialic acid forms was successfully introduced using a OPME sialylation reation containing a CMP-sialic acid synthetase and Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) mutant PmST1 M144D with or without a sialic acid aldolase to form sLeaβProN3 containing naturally occurring or non-natural sialic acid forms in preparative scales.
Collapse
Affiliation(s)
- Nova Tasnima
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Xuebin Yan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wanqing Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - An Xiao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Fischöder T, Cajic S, Reichl U, Rapp E, Elling L. Enzymatic Cascade Synthesis Provides Novel Linear Human Milk Oligosaccharides as Reference Standards for xCGE-LIF Based High-Throughput Analysis. Biotechnol J 2018; 14:e1800305. [PMID: 30076755 DOI: 10.1002/biot.201800305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/10/2018] [Indexed: 12/26/2022]
Abstract
A rising amount of known health benefits leads to an increased attention of science and nutrient industry to human milk oligosaccharides (HMOS). The unique diversity of HMOS includes several rare, complex, and high molecular weight structures. Therefore, identification and elucidation of complex structures, which may occur only in traces, poses a daunting analytical challenge, further complicated by the limited access to suitable standards. Regarding this, inherent diversity of HMOS and their structural complexity make them difficult to synthesize. The use of recombinant Leloir-glycosyltransferases offers a common strategy to overcome the latter issues. In this study, linear long-chained Lacto-N-biose-type (LNT) and Lacto-N-neo-type (LNnT) HMOS are tailored far beyond the known naturally occurring length. Thereby novel well-defined reference standards for screening HMOS composition by high performance and high throughput analytics are provided. It is shown here for the first time the synthesis of LNT oligomers up to 26 and LNnT oligomers up to 30 sugar units in a semi-sequential one-pot synthesis as analyzed by high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF). While being a high-throughput method, xCGE-LIF can also handle long chained linkage isomers of challenging similarity, some of them even present only in trace amounts.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,Prof. U. Reichl, Chair of Bioprocess Engineering Otto-von-Guericke-University, Universitätspl. 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,glyXera GmbH, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|