1
|
Chen X, Xie L, Zhang C, Tian S, Tang Z, Xiang M, Tian W, Lu P, Yang X. Synthesis of Nucleotides Bearing the 2'-O-Trifluoromethyl Group and Their Application in RNA Analogs Preparation. Curr Protoc 2024; 4:e956. [PMID: 38230581 DOI: 10.1002/cpz1.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The integration of fluorine atoms into biologically active organic compounds has proved to be a vital technique in small molecule drugs. This technique can substantially enhance crucial properties, including metabolic stability, lipophilicity, and bioavailability, often with a mere addition of a single fluorine atom or a trifluoromethyl group. Over the past few decades, this concept has also been applied in nucleic acid chemistry. A commonly employed 2'-OH substitution is the introduction of a 2'-deoxy-2'-fluoro (2'-F) group. The strong electronegativity of fluorine prompts the modified siRNA to readily adopt a C3'-endo conformation, resulting in significant advantages in terms of binding affinity. To enrich the toolbox of chemical modification of oligonucleotides, the replacement of the 2'-OH with the 2'-O-trifluoromethyl group has been developed in RNA analog synthesis. Oligodeoxynucleotides containing the 2'-O-trifluoromethyl group can greatly increase the thermal stability of DNA/RNA duplexes depending on the position and amount of the modification. Moreover, 2'-O-trifluoromethylated oligodeoxynucleotide also exhibited a slightly higher resistance to snake venom phosphodiesterase than the unmodified oligodeoxynucleotide. The 2'-O-trifluoromethylated oligonucleotides can emerge as a label to study RNA structure and function as well, or to develop DNA/RNA-based diagnostics. Hence, it is necessary to report an effective method for the synthesis, deprotection, purification, and characterization of oligonucleotides bearing a 2'-O-trifluoromethyl group. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 6-N-benzoyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl adenosine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 2: Preparation of 4-N-acetyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl cytidine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 3: Preparation of 2-N-isobutyryl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl guanine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 4: Preparation of 5'-O-dimethoxytrityl-2'-O-2-trifluoromethyl uridine 3'-(2-cyanoethyl N,N-diisopropyl) phosphoramidite Basic Protocol 5: Solid-phase synthesis of 2'-O-trifluoromethylated RNA analogs Basic Protocol 6: Deprotection and purification of 2'-O-trifluoromethyl-RNAs.
Collapse
|
2
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Chen X, Xie L, Zhang C, Tian S, Tang Z, Tian W, Lu P, Yang X. A Convenient Method for the Synthesis of 2'-O-Cyanoethylated Nucleotides and Their Application in the Solid-Phase Synthesis of Related RNA Analogs. Curr Protoc 2023; 3:e923. [PMID: 37962485 DOI: 10.1002/cpz1.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Although small interfering RNA (siRNA) is a key player among gene inhibition therapeutics, there are many obstacles to the development of siRNA drugs due to inherent properties of oligonucleotides, including the unsatisfactory stability of unmodified siRNA, poor pharmacokinetic distribution, and the toxicity induced by off-target effects. To maximize treatment potency, chemical modification of siRNA has undoubtedly been the most successful strategy by far. Widely applied modifications include phosphorothioate linkages, 2'-O-methyl modifications, and 2'-fluoro modifications, among others. To extend the family of chemical modifications for oligonucleotides, 2'-O-cyanoethylated RNA analogs were developed through the replacement of the 2'-hydroxyl group with a 2'-O-cyanoethyl group (-OCH2 CH2 CN). This modification can provide several advantages over unmodified RNA, such as increased stability, improved binding affinity to complementary DNA or RNA strands, and resistance to degradation by cellular nucleases. The 2'-O-cyanoethyl-modified RNAs not only are applied in RNA silencing machinery but also act as research tools for studying RNA structure and function or for developing RNA-based diagnostics. Therefore, the efficient synthesis, deprotection, purification, and characterization of 2'-O-cyanoethylated RNAs deserves more attention. This protocol describes the chemical synthesis of 2'-O-cyanoethylated nucleotides and the solid-phase synthesis, deprotection, and purification of 2'-O-cyanoethylated RNAs. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 6-N-dimethylformamidyl-5'-O-dimethoxytrityl-2'-O-cyanoethyl adenosine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 2: Preparation of 4-N-acetyl-5'-O-dimethoxytrityl-2'-O-cyanoethyl cytidine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 3: Preparation of 2-N-dimethylformamidyl-5'-O-dimethoxytrityl-2'-O-cyanoethyl guanine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 4: Preparation of 5'-O-dimethoxytrityl-2'-O-2-cyanoethyl uridine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 5: Solid-phase synthesis of 2'-O-cyanoethylated RNA analogs Basic Protocol 6: Deprotection and purification of synthesized 2'-O-cyanoethyl-RNAs.
Collapse
Affiliation(s)
- Xuan Chen
- Sirnaomics Ltd. Suzhou, Suzhou, China
| | - Long Xie
- Sirnaomics Ltd. Suzhou, Suzhou, China
| | | | - Shen Tian
- Sirnaomics Ltd. Suzhou, Suzhou, China
| | - Zeyu Tang
- Sirnaomics Ltd. Suzhou, Suzhou, China
| | | | | | | |
Collapse
|
4
|
Hyjek-Składanowska M, Anderson BA, Mykhaylyk V, Orr C, Wagner A, Poznański J, Skowronek K, Seth P, Nowotny M. Structures of annexin A2-PS DNA complexes show dominance of hydrophobic interactions in phosphorothioate binding. Nucleic Acids Res 2022; 51:1409-1423. [PMID: 36124719 PMCID: PMC9943651 DOI: 10.1093/nar/gkac774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.
Collapse
Affiliation(s)
- Malwina Hyjek-Składanowska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | | | | | - Christian Orr
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - Jarosław T Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Structural Biology Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Punit Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Marcin Nowotny
- To whom correspondence should be addressed. Tel: +48 22 597 0717; Fax: +48 22 597 0715;
| |
Collapse
|
5
|
Duschmalé J, Schäublin A, Funder E, Schmidt S, Kiełpiński ŁJ, Nymark H, Jensen K, Koch T, Duschmalé M, Koller E, Møller MR, Schadt S, Husser C, Brink A, Sewing S, Minz T, Wengel J, Bleicher K, Li M. Investigating discovery strategies and pharmacological properties of stereodefined phosphorodithioate LNA gapmers. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:176-188. [PMID: 35860384 PMCID: PMC9271985 DOI: 10.1016/j.omtn.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Duschmalé
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Adrian Schäublin
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erik Funder
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Steffen Schmidt
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Łukasz J. Kiełpiński
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Helle Nymark
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Klaus Jensen
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Troels Koch
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Martina Duschmalé
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erich Koller
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marianne Ravn Møller
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Simone Schadt
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Christophe Husser
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Andreas Brink
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Sabine Sewing
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Tanja Minz
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Konrad Bleicher
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Meiling Li
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
- Corresponding author Meiling Li, Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| |
Collapse
|
6
|
Li J, Wan H, Zhang H, Wang XL, Liu G, Wu G, He X, Deng Z, Zhao YL. Molecular recognition between bacterial phosphorothioate DNA and sulfur-binding domain (SBD): competition between the water cage and chalcogen-hydrophobic packet. Phys Chem Chem Phys 2022; 24:9176-9187. [PMID: 35383346 DOI: 10.1039/d2cp00291d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial DNA phosphorothioation (PT) physiologically and stereo-specifically replaces a non-bridging oxygen in a phosphate link with a sulfur atom, which can be recognized by a highly conserved sulfur-binding domain (SBD). Here we conducted thermodynamic integration (TI), molecular dynamics simulation, and quantum chemical calculations to decipher the specific molecular interactions between PT-DNA and SBD in Streptomyces coelicolor type IV restriction enzyme ScoMcrA. The TI-calculated binding affinity of (5'-CCGRp-PSGCCGG-3')2 is larger than that of (5'-CCGGCCGG-3')2 by about 7.4-7.7 kcal mol-1. The binding difference dominantly stems from hydration energy of non-phosphorothioate DNA (9.8-10.6 kcal mol-1) in aqueous solution, despite the persistent preference of 2.6-3.2 kcal mol-1 in the DNA-SBD MD simulations. Furthermore, the quantum chemical calculations reveal an unusual non-covalent interaction in the phosphorothioate-binding scenario, where the PS⋯NP165 chalcogen bond prevails the PS⋯HCβ vdW interactions from the adjacent residues H116-R117-Y164-P165-A168. Thus, the chalcogen-hydrophobic interaction pulls PT-DNA into the SBD binding pocket while the water cage pulls a normal DNA molecule out. The synergetic mechanism suggests the special roles of the proline pyrrolidine group in the SBD proteins, consistent with the experimental observations in the X-ray crystallography and structural bioinformatics analysis.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Haibo Wan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Haoqing Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiao-Lei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Pallan PS, Lybrand TP, Schlegel MK, Harp JM, Jahns H, Manoharan M, Egli M. Incorporating a Thiophosphate Modification into a Common RNA Tetraloop Motif Causes an Unanticipated Stability Boost. Biochemistry 2020; 59:4627-4637. [PMID: 33275419 DOI: 10.1021/acs.biochem.0c00685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GNRA (N = A, C, G, or U; R = A or G) tetraloops are common RNA secondary structural motifs and feature a phosphate stacked atop a nucleobase. The rRNA sarcin/ricin loop (SRL) is capped by GApGA, and the phosphate p stacks on G. We recently found that regiospecific incorporation of a single dithiophosphate (PS2) but not a monothiophosphate (PSO) instead of phosphate in the backbone of RNA aptamers dramatically increases the binding affinity for their targets. In the RNA:thrombin complex, the key contribution to the 1000-fold tighter binding stems from an edge-on contact between PS2 and a phenylalanine ring. Here we investigated the consequences of replacing the SRL phosphate engaged in a face-on interaction with guanine with either PS2 or PSO for stability. We found that PS2···G and Rp-PSO···G contacts stabilize modified SRLs compared to the parent loop to unexpected levels: up to 6.3 °C in melting temperature Tm and -4.7 kcal/mol in ΔΔG°. Crystal structures demonstrate that the vertical distance to guanine for the closest sulfur is just 0.05 Å longer on average compared to that of oxygen despite the larger van der Waals radius of the former (1.80 Å for S vs 1.52 Å for O). The higher stability is enthalpy-based, and the negative charge as assessed by a neutral methylphosphonate modification plays only a minor role. Quantum mechanical/molecular mechanical calculations are supportive of favorable dispersion attraction interactions by sulfur making the dominant contribution. A stacking interaction between phosphate and guanine (SRL) or uracil (U-turn) is also found in newly classified RNA tetraloop families besides GNRA.
Collapse
Affiliation(s)
| | | | - Mark K Schlegel
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Hartmut Jahns
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
8
|
Kaczmarek R, Ward S, Debnath D, Jacobs T, Stark AD, Korczyński D, Kumar A, Sevilla MD, Denisov SA, Shcherbakov V, Pernot P, Mostafavi M, Dembinski R, Adhikary A. One Way Traffic: Base-to-Backbone Hole Transfer in Nucleoside Phosphorodithioate. Chemistry 2020; 26:9495-9505. [PMID: 32059063 PMCID: PMC7416487 DOI: 10.1002/chem.202000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Indexed: 12/26/2022]
Abstract
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S- )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+ -P(S- )=S. The ionization potential of G-P(S- )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S- )=S led to dithiyl radical (P-2S. ) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S- )=S concentrations showed a bimolecular conversion of P-2S. to the σ2 -σ*1 -bonded dimer anion radical [-P-2S- . 2S-P-]- [ΔG (150 K, DFT)=-7.2 kcal mol-1 ]. However, [-P-2S- . 2S-P-]- formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol-1 ]. Neither P-2S. nor [-P-2S- . 2S-P-]- oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.
Collapse
Affiliation(s)
- Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Dipra Debnath
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Taisiya Jacobs
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Alexander D Stark
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Dariusz Korczyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Sergey A Denisov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Viacheslav Shcherbakov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Pascal Pernot
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Roman Dembinski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| |
Collapse
|
9
|
Yamasaki K, Akutsu Y, Yamasaki T, Miyagishi M, Kubota T. Enhanced affinity of racemic phosphorothioate DNA with transcription factor SATB1 arising from diastereomer-specific hydrogen bonds and hydrophobic contacts. Nucleic Acids Res 2020; 48:4551-4561. [PMID: 32187371 PMCID: PMC7192603 DOI: 10.1093/nar/gkaa170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphorothioate modification is commonly introduced into therapeutic oligonucleotides, typically as a racemic mixture in which either of the two non-bridging phosphate oxygens is replaced by sulfur, which frequently increases affinities with proteins. Here, we used isothermal titration calorimetry and X-ray crystallography to investigate the thermodynamic and structural properties of the interaction between the primary DNA-binding domain (CUTr1) of transcription factor SATB1 and dodecamer DNAs with racemic phosphorothioate modifications at the six sites known to contact CUTr1 directly. For both the modified and unmodified DNAs, the binding reactions were enthalpy-driven at a moderate salt concentration (50 mM NaCl), while being entropy-driven at higher salt concentrations with reduced affinities. The phosphorothioate modifications lowered this susceptibility to salt, resulting in a significantly enhanced affinity at a higher salt concentration (200 mM NaCl), although only some DNA molecular species remained interacting with CUTr1. This was explained by unequal populations of the two diastereomers in the crystal structure of the complex of CUTr1 and the phosphorothioate-modified DNA. The preferred diastereomer formed more hydrogen bonds with the oxygen atoms and/or more hydrophobic contacts with the sulfur atoms than the other, revealing the origins of the enhanced affinity.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Yukie Akutsu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Makoto Miyagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Tomomi Kubota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
10
|
Hyjek-Składanowska M, Vickers TA, Napiórkowska A, Anderson BA, Tanowitz M, Crooke ST, Liang XH, Seth PP, Nowotny M. Origins of the Increased Affinity of Phosphorothioate-Modified Therapeutic Nucleic Acids for Proteins. J Am Chem Soc 2020; 142:7456-7468. [PMID: 32202774 DOI: 10.1021/jacs.9b13524] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The phosphorothioate backbone modification (PS) is one of the most widely used chemical modifications for enhancing the drug-like properties of nucleic acid-based drugs, including antisense oligonucleotides (ASOs). PS-modified nucleic acid therapeutics show improved metabolic stability from nuclease-mediated degradation and exhibit enhanced interactions with plasma, cell-surface, and intracellular proteins, which facilitates their tissue distribution and cellular uptake in animals. However, little is known about the structural basis of the interactions of PS nucleic acids with proteins. Here, we report a crystal structure of the DNA-binding domain of a model ASO-binding protein PC4, in complex with a full PS 2'-OMe DNA gapmer ASO. To our knowledge this is the first structure of a complex between a protein and fully PS nucleic acid. Each PC4 dimer comprises two DNA-binding interfaces. In the structure one interface binds the 5'-terminal 2'-OMe PS flank of the ASO, while the other interface binds the regular PS DNA central part in the opposite polarity. As a result, the ASO forms a hairpin-like structure. ASO binding also induces the formation of a dimer of dimers of PC4, which is stabilized by base pairing between homologous regions of the ASOs bound by each dimer of PC4. The protein interacts with the PS nucleic acid through a network of electrostatic and hydrophobic interactions, which provides insights into the origins for the enhanced affinity of PS for proteins. The importance of these contacts was further confirmed in a NanoBRET binding assay using a Nano luciferase tagged PC4 acting as the BRET donor, to a fluorescently conjugated ASO acting as the BRET acceptor. Overall, our results provide insights into the molecular forces that govern the interactions of PS ASOs with cellular proteins and provide a potential model for how these interactions can template protein-protein interactions causative of cellular toxicity.
Collapse
Affiliation(s)
- Malwina Hyjek-Składanowska
- Structural Biology Center, International Institute of Molecular and Cell Biology, 4 Trojdena St., 02-109 Warsaw, Poland.,Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland
| | - Timothy A Vickers
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Agnieszka Napiórkowska
- Structural Biology Center, International Institute of Molecular and Cell Biology, 4 Trojdena St., 02-109 Warsaw, Poland.,Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland
| | - Brooke A Anderson
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michael Tanowitz
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Stanley T Crooke
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Xue-Hai Liang
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Marcin Nowotny
- Structural Biology Center, International Institute of Molecular and Cell Biology, 4 Trojdena St., 02-109 Warsaw, Poland.,Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland
| |
Collapse
|
11
|
Egli M, Lybrand TP. Enhanced Dispersion and Polarization Interactions Achieved through Dithiophosphate Group Incorporation Yield a Dramatic Binding Affinity Increase for an RNA Aptamer-Thrombin Complex. J Am Chem Soc 2019; 141:4445-4452. [PMID: 30794399 DOI: 10.1021/jacs.9b00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regiospecific replacement of a single phosphate (PO2) by a dithiophosphate (PS2) group in an RNA can dramatically increase its binding affinity for a target protein. Thus, complexes between antithrombin and anti-VEGF RNA aptamers with single dithiophosphate moieties and thrombin and VEGF, respectively, display equilibrium dissociation constants KD of ca. 1 pM, 1000-fold tighter than the native RNA complexes (ca. 1 nM). Inspection of crystal structures of the native and PS2-RNA aptamer:thrombin complexes reveals an RNA-induced fit in the latter. This leads to a close approach between PS2 and the phenyl ring edge of Phe-232 that is surrounded by pairs of lysines and arginines. To better understand the origins of the tighter binding and individual contributions to the interaction energy, we carried out QM calculations with phosphate- and dithiophosphate-benzene and dimethyl phosphate- and dimethyl dithiophosphate-benzene model systems. These calculations demonstrate that the dithiophosphate-benzene interaction is much stronger than the corresponding interaction with phosphate. QM/MM calculations with the full complexes confirmed this finding and support the hypothesis that the electric field generated by basic residues surrounding Phe-232 is key to the polarization of the PS2 moiety. Thus, disparate polarization and dispersion energies between the PO2 and PS2 complexes contribute critically to the difference in binding affinity. By comparison, easier desolvation of the dithiophosphate group compared to phosphate does not contribute decisively to the observed difference in binding affinity. Favorable polarization and dispersion energies may be a general feature of the dramatic affinity gains seen for complexes between RNAs carrying dithiophosphate groups and their binding proteins.
Collapse
|
12
|
Dolot R, Lam CH, Sierant M, Zhao Q, Liu FW, Nawrot B, Egli M, Yang X. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res 2018; 46:4819-4830. [PMID: 29684204 PMCID: PMC5961234 DOI: 10.1093/nar/gky268] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/15/2018] [Indexed: 01/11/2023] Open
Abstract
Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.
Collapse
Affiliation(s)
- Rafal Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Curtis H Lam
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng-Wu Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| |
Collapse
|
13
|
Sigel A, Operschall BP, Sigel RKO, Sigel H. Metal ion complexes of nucleoside phosphorothioates reflecting the ambivalent properties of lead(ii). NEW J CHEM 2018. [DOI: 10.1039/c7nj04989g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lead(ii)-lone pair leads to ambivalency: hemidirected (distorted, non-spherical) coordination spheres result from electronegative O-coordination and holodirected (symmetric, spherical) ones from less electronegative S-coordination.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Bert P. Operschall
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | | | - Helmut Sigel
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|