1
|
Vijayakanth T, Dasgupta S, Ganatra P, Rencus-Lazar S, Desai AV, Nandi S, Jain R, Bera S, Nguyen AI, Gazit E, Misra R. Peptide hydrogen-bonded organic frameworks. Chem Soc Rev 2024; 53:3640-3655. [PMID: 38450536 DOI: 10.1039/d3cs00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| |
Collapse
|
2
|
Soares I, Rodrigues I, da Costa PM, Gales L. Antibacterial and Antibiofilm Properties of Self-Assembled Dipeptide Nanotubes. Int J Mol Sci 2022; 24:ijms24010328. [PMID: 36613773 PMCID: PMC9820700 DOI: 10.3390/ijms24010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Over recent decades, multidrug-resistant pathogens have become a global concern, with WHO even considering it one of the biggest threats to global health, food security, and development today, which led to the search for alternative antibacterial agents. A special class is formed by peptides composed by the diphenylalanine motif whose antibacterial properties result from their supramolecular arrangement into nanotubes. However, several other dipeptides that also form nanotubes have been largely overlooked. Here, we present the antibacterial activity of four dipeptide nanotubes. The results point to diverse mechanisms through which dipeptide nanotubes exert their effect against bacteria. Antibacterial activity was similar for dipeptide nanotubes sufficiently wide to allow water flux while dipeptides displaying smaller channels were inactive. This suggests that two of the tested dipeptides, L-Phe-L-Phe (FF, diphenylalanine) and L-Leu-L-Ser (LS), are pore forming structures able to induce membrane permeation and affect cellular hydration and integrity. Of these two dipeptides, only FF demonstrated potential to inhibit biofilm formation. The amyloid-like nature and hydrophobicity of diphenylalanine assemblies are probably responsible for their adhesion to cell surfaces preventing biofilm formation and bacteria attachment.
Collapse
Affiliation(s)
- Iris Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Inês Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo Martins da Costa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Luís Gales
- i3S—Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
3
|
Water admixture triggers the self-assembly of the glycyl-glycine thin film at the presence of organic vapors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
An Ultrasensitive Picric Acid Sensor Based on a Robust 3D Hydrogen-Bonded Organic Framework. BIOSENSORS 2022; 12:bios12090682. [PMID: 36140067 PMCID: PMC9496322 DOI: 10.3390/bios12090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs), as a newly developed porous material, have been widely used in various fields. To date, several organic building units (OBUs) with tri-, tetra-, and hexa-carboxylic acid synthons have been applied to synthesize HOFs. To our knowledge, di-carboxylic acids have rarely been reported for the construction of HOFs, in particular, di-carboxylic acid-based HOFs with fluorescence sensing properties have not been reported. In this study, a rare example of a di-carboxylic acid-based, luminescent three-dimensional hydrogen-bonded organic framework has been successfully constructed and structurally characterized; it has a strong electron-rich property originated from its organic linker 9-phenylcarbazole-3,6-dicarboxylic acid. It represents the first example of HOF-based sensors for the highly selective and sensitive detection of PA (Picric acid) with reusability; the LOD is less than 60 nM. This work thus provides a new avenue for the fabrication of fluorescent HOFs sensing towards explosives.
Collapse
|
5
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Liebing P, Pitts CR, Reimann M, Trapp N, Rombach D, Bornemann D, Kaupp M, Togni A. The Supramolecular Structural Chemistry of Pentafluorosulfanyl and Tetrafluorosulfanylene Compounds. Chemistry 2021; 27:6086-6093. [PMID: 33544928 PMCID: PMC8048635 DOI: 10.1002/chem.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Indexed: 11/17/2022]
Abstract
The analysis of crystal structures of SF5 - or SF4 -containing molecules revealed that these groups are often surrounded by hydrogen or other fluorine atoms. Even though fluorine prefers F⋅⋅⋅H over F⋅⋅⋅F contacts, the latter appeared to be important in many compounds. In a significant number of datasets, the closest F⋅⋅⋅F contacts are below 95 % of the van der Waals distance of two F atoms. Moreover, a number of repeating structural motifs formed by contacts between SF5 groups was identified, including different supramolecular dimers and infinite chains. Among SF4 -containing molecules, the study focused on SF4 Cl compounds, including the first solid-state structure analyses of these reactive species. Additionally, electrostatic potential surfaces of a series of Ph-SF5 derivatives were calculated, pointing out the substituent influence on the ability of F⋅⋅⋅X contact formation (X=F or other electronegative atom). Interaction energies were calculated for different dimeric arrangements of Ph-SF5 , which were extracted from experimental crystal structure determinations.
Collapse
Affiliation(s)
- Phil Liebing
- Institut für ChemieOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Cody Ross Pitts
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Marc Reimann
- Institut für Chemie, Theoretische Chemie/ QuantenchemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Nils Trapp
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - David Rombach
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Dustin Bornemann
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/ QuantenchemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Antonio Togni
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| |
Collapse
|
7
|
Wang Y, Ming XX, Zhang CP. Fluorine-Containing Inhalation Anesthetics: Chemistry, Properties and Pharmacology. Curr Med Chem 2020; 27:5599-5652. [DOI: 10.2174/0929867326666191003155703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Studies on fluorinated inhalation anesthetics, including synthesis, physical chemistry and
pharmacology, have been summarized in this review. Retrospecting the history of inhalation anesthetics
revealed their increasing reliance on fluorine and ether structures. Halothane causes a rare but
severe immune-based hepatotoxicity, which was replaced by enflurane in the 1970s. Isoflurane replaced
enflurane in the 1980s, showing modest advantages (e.g. lower solubility, better metabolic
stability, and without convulsive predisposition). Desflurane and sevoflurane came into use in the
1990s, which are better anesthetics than isoflurane (less hepatotoxicity, lower solubility, and/or
markedly decreased pungency). However, they are still less than perfect. To gain more ideal inhalation
anesthetics, a large number of fluorinated halocarbons, polyfluorocycloalkanes, polyfluorocycloalkenes,
fluoroarenes, and polyfluorooxetanes, were prepared and their potency and toxicity were
evaluated. Although the pharmacology studies suggested that some of these agents produced anesthesia,
no further studies were continued on these compounds because they showed obvious lacking
as anesthetics. Moreover, the anesthetic activity cannot be simply predicted from the molecular
structures but has to be inferred from the experiments. Several regularities were found by experimental
studies: 1) the potency and toxicity of the saturated linear chain halogenated ether are enhanced
when its molecular weight is increased; 2) the margin of safety decreases and the recovery
time is prolonged when the boiling point of the candidate increases; and 3) compounds with an
asymmetric carbon terminal exhibit good anesthesia. Nevertheless, the development of new inhalation
anesthetics, better than desflurane and sevoflurane, is still challenging not only because of the
poor structure/activity relationship known so far but also due to synthetic issues.
Collapse
Affiliation(s)
- Yuzhong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
8
|
Tao K, Xue B, Han S, Aizen R, Shimon LJW, Xu Z, Cao Y, Mei D, Wang W, Gazit E. Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45192-45201. [PMID: 32924412 PMCID: PMC7549093 DOI: 10.1021/acsami.0c13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Framework materials have shown promising potential in various biological applications. However, the state-of-the-art components show low biocompatibility or mechanical instability, or cannot integrate both optics and electronics, thus severely limiting their extensive applications in biological systems. Herein, we demonstrate that amide-based bioorganic building blocks, including dipeptides and dipeptide nucleic acids, can self-assemble into hydrogen-bonded suprahelix architectures of controllable handedness, which then form suprahelical frameworks with diverse cavities. Especially, the cavities can be tuned to be hydrophilic or hydrophobic, and the shortest diagonal distance can be modulated from 0.5 to 1.8 nm, with the volume proportion in the unit cell changing from 5 to 60%. Furthermore, the hydrogen bonding networks result in high mechanical rigidity and semiconductively optoelectronic properties, which allow the utilization of the suprahelical frameworks as supramolecular scaffolds for artificial photosynthesis. Our findings reveal amide-based suprahelix architectures acting as bioinspired supramolecular frameworks, thus extending the constituents portfolio and increasing the feasibility of using framework materials for biological applications.
Collapse
Affiliation(s)
- Kai Tao
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Shuyi Han
- China
Petroleum Engineering & Construction Corp. Southwest Company, No. 6th Shenghua Road, High-Tech
Zone, Chengdu 610094, Sichuan, China
| | - Ruth Aizen
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Zhengyu Xu
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Deqing Mei
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
9
|
Chiral Cocrystal Solid Solutions, Molecular Complexes, and Salts of N-Triphenylacetyl-l-Tyrosine and Diamines. Int J Mol Sci 2019; 20:ijms20205004. [PMID: 31658607 PMCID: PMC6829379 DOI: 10.3390/ijms20205004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022] Open
Abstract
The molecular recognition process and the ability to form multicomponent supramolecular systems have been investigated for the amide of triphenylacetic acid and l-tyrosine (N-triphenylacetyl-l-tyrosine, TrCOTyr). The presence of several supramolecular synthons within the same amide molecule allows the formation of various multicomponent crystals, where TrCOTyr serves as a chiral host. Isostructural crystals of solvates with methanol and ethanol and a series of binary crystalline molecular complexes with selected organic diamines (1,5-naphthyridine, quinoxaline, 4,4′-bipyridyl, and DABCO) were obtained. The structures of the crystals were planned based on non-covalent interactions (O–H···N or N–H+···O− hydrogen bonds) present in a basic structural motif, which is a heterotrimeric building block consisting of two molecules of the host and one molecule of the guest. The complex of TrCOTyr with DABCO is an exception. The anionic dimers built off the TrCOTyr molecules form a supramolecular gutter, with trityl groups located on the edge and filled by DABCO cationic dimers. Whereas most of the racemic mixtures crystallize as racemic crystals or as conglomerates, the additional tests carried out for racemic N-triphenylacetyl-tyrosine (rac-TrCOTyr) showed that the compound crystallizes as a solid solution of enantiomers.
Collapse
|
10
|
Tao K, Xue B, Li Q, Hu W, Shimon LJ, Makam P, Si M, Yan X, Zhang M, Cao Y, Yang R, Li J, Gazit E. Stable and optoelectronic dipeptide assemblies for power harvesting. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2019; 30:10-16. [PMID: 31719792 PMCID: PMC6850901 DOI: 10.1016/j.mattod.2019.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Low biocompatibility or engineerability of conventional inorganic materials limits their extensive application for power harvesting in biological systems or at bio-machine interfaces. In contrast, intrinsically biocompatible peptide self-assemblies have shown promising potential as a new type of ideal components for eco-friendly optoelectronic energy-harvesting devices. However, the structural instability, weak mechanical strength, and inefficient optical or electrical properties severely impede their extensive application. Here, we demonstrate tryptophan-based aromatic dipeptide supramolecular structures to be direct wide-gap semiconductors. The molecular packings can be effectively modulated by changing the peptide sequence. The extensive and directional hydrogen bonding and aromatic interactions endow the structures with unique rigidity and thermal stability, as well as a wide-spectrum photoluminescence covering nearly the entire visible region, optical waveguiding, temperature/irradiation-dependent conductivity, and the ability to sustain quite high external electric fields. Furthermore, the assemblies display high piezoelectric properties, with a measured open-circuit voltage of up to 1.4 V. Our work provides insights into using aromatic short peptide self-assemblies for the fabrication of biocompatible, miniaturized electronics for power generation with tailored semiconducting optoelectronic properties and improved structural stability.
Collapse
Affiliation(s)
- Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bin Xue
- Collaborative Innovation Centre of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National Centre for Nanoscience and Technology, Beijing 100190, China
| | - Wen Hu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Linda J.W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mingsu Si
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingjun Zhang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Cao
- Collaborative Innovation Centre of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National Centre for Nanoscience and Technology, Beijing 100190, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Lin RB, He Y, Li P, Wang H, Zhou W, Chen B. Multifunctional porous hydrogen-bonded organic framework materials. Chem Soc Rev 2019; 48:1362-1389. [PMID: 30676603 PMCID: PMC11061856 DOI: 10.1039/c8cs00155c] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs) represent an interesting type of polymeric porous materials that can be self-assembled through H-bonding between organic linkers. To realize permanent porosity in HOFs, stable and robust open frameworks can be constructed by judicious selection of rigid molecular building blocks and hydrogen-bonded units with strong H-bonding interactions, in which the framework stability might be further enhanced through framework interpenetration and other types of weak intermolecular interactions such as ππ interactions. Owing to the reversible and flexible nature of H-bonding connections, HOFs show high crystallinity, solution processability, easy healing and purification. These unique advantages enable HOFs to be used as a highly versatile platform for exploring multifunctional porous materials. Here, the bright potential of HOF materials as multifunctional materials is highlighted in some of the most important applications for gas storage and separation, molecular recognition, electric and optical materials, chemical sensing, catalysis, and biomedicine.
Collapse
Affiliation(s)
- Rui-Biao Lin
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | | | | | | | | | | |
Collapse
|
12
|
García-Raso A, Terrón A, Bauzá A, Frontera A, Molina JJ, Vázquez-López EM, Fiol JJ. Crystal structures of N6-modified-aminoacid/peptide nucleobase analogs: hybrid adenine–glycine and adenine–glycylglycine molecules. NEW J CHEM 2018. [DOI: 10.1039/c8nj02147c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion–π interactions in crystal structures of N6-modified-aminoacid and dipeptide adenine analogs are investigated using X-ray crystallography and DFT calculations.
Collapse
Affiliation(s)
- Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Angel Terrón
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Jhon J. Molina
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Ezequiel M. Vázquez-López
- Instituto de Investigación Sanitaria Galicia Sur/Universidade de Vigo
- Departamento de Química Inorgánica
- Facultade de Química
- Edificio Ciencias Experimentais
- E-36310 Vigo
| | - Juan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|