1
|
Brandner LA, Marmiroli B, Linares-Moreau M, Barella M, Abbasgholi-Na B, Velásquez-Hernández MDJ, Flint KL, Dal Zilio S, Acuna GP, Wolinski H, Amenitsch H, Doonan CJ, Falcaro P. Ordered Transfer from 3D-Oriented MOF Superstructures to Polymeric Films: Microfabrication, Enhanced Chemical Stability, and Anisotropic Fluorescent Patterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404384. [PMID: 38943469 DOI: 10.1002/adma.202404384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics. However, the structure of 3D-oriented MOF films and patterns can rapidly degrade under humid and acidic conditions. Thus, more durable 3D-ordered porous systems are desired for practical applications. Here, oriented porous polymer films and patterns are prepared by using heteroepitaxially oriented N3-functionalized MOF films as precursor materials. The film fabrication protocol utilizes an azide-alkyne cycloaddition on the Cu2(AzBPDC)2DABCO MOF. The micropatterning protocol exploits the X-ray sensitivity of azide groups in Cu2(AzBPDC)2DABCO, enabling selective degradation in the irradiated areas. The masked regions of the MOF film retain their N3-functionality, allowing for subsequent cross-linking through azide-alkyne coupling. Subsequent acidic treatment removes the Cu ions from the MOF, yielding porous polymer micro-patterns. The polymer has high chemical stability and shows an anisotropic fluorescent response. The use of 3D-oriented MOF systems as precursors for the fabrication of oriented porous polymers will facilitate the progress of optical components for photonic applications.
Collapse
Affiliation(s)
- Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Mariano Barella
- Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER 08, Fribourg, CH-1700, Switzerland
| | - Behnaz Abbasgholi-Na
- CNR-IOM - Istituto Officina dei Materiali, SS 14, Basovizza, Trieste, 34149, Italy
| | | | - Kate L Flint
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simone Dal Zilio
- CNR-IOM - Istituto Officina dei Materiali, SS 14, Basovizza, Trieste, 34149, Italy
| | - Guillermo P Acuna
- Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER 08, Fribourg, CH-1700, Switzerland
| | - Heimo Wolinski
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Christian J Doonan
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
2
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
3
|
Ling JL, Wu CD. Transformation of metal-organic frameworks with retained networks. Chem Commun (Camb) 2022; 58:8602-8613. [PMID: 35833566 DOI: 10.1039/d2cc02865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous coordination materials with systematically designable network structures and tunable properties, demonstrating great potential for applications in diverse fields. However, the generally poor stability of dynamic coordination bonds in MOFs hinders their practical applications in harsh environments. Although MOFs have been used as precursors and templates for the production of various derivatives with enhanced stability via thermal treatment, the extreme thermolytic conditions often destroy the network structures, consequently resulting in obvious decreases in porosity and surface areas with undesired characteristics. This feature article discusses the generally used pathways for the transformation of MOFs and the advanced fabrication methods for the production of various MOF-derived materials. We particularly emphasize the recent progress in the designed strategies for customization and derivation tailoring of MOFs, which could produce MOF-derived functional materials with remaining framework skeletons and inherited characteristics (surface area, porosity and properties) of the parent MOFs, exhibiting great promise for practical applications.
Collapse
Affiliation(s)
- Jia-Long Ling
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
4
|
Chai L, Pan J, Hu Y, Qian J, Hong M. Rational Design and Growth of MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100607. [PMID: 34245231 DOI: 10.1002/smll.202100607] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Indexed: 06/13/2023]
Abstract
Multiporous metal-organic frameworks (MOFs) have emerged as a subclass of highly crystalline inorganic-organic materials, which are endowed with high surface areas, tunable pores, and fascinating nanostructures. Heterostructured MOF-on-MOF composites are recently becoming a research hotspot in the field of chemistry and materials science, which focus on the assembly of two or more different homogeneous or heterogeneous MOFs with various structures and morphologies. Compared with one single MOF, the dual MOF-on-MOF composites exhibit unprecedented tunability, hierarchical nanostructure, synergistic effect, and enhanced performance. Due to the difference of inorganic metals and organic ligands, the lattice parameters in a, b, and c directions in the single crystal cells could bring about subtle or large structural difference. It will result in the composite material with distinct growth methods to obtain secondary MOF grown from the initial MOF. In this review, the authors wish to mainly outline the latest synthetic strategies of heterostructured MOF-on-MOFs and their derivatives, including ordered epitaxial growth, random epitaxial growth, etc., which show the tutorial guidelines for the further development of various MOF-on-MOFs.
Collapse
Affiliation(s)
- Lulu Chai
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
5
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
6
|
Inter-MOF hybrid (IMOFH): A concise analysis on emerging core–shell based hierarchical and multifunctional nanoporous materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213786] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021; 60:14222-14235. [DOI: 10.1002/anie.202011213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Ha J, Moon HR. Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching. CrystEngComm 2021. [DOI: 10.1039/d0ce01883j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight summarises the previously reported MOF-on-MOF systems, with a focus on the presented crystallographic information and classification of the systems according to lattice parameter matching.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
9
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
10
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
11
|
Begum S, Hassan Z, Bräse S, Tsotsalas M. Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10657-10673. [PMID: 32787055 DOI: 10.1021/acs.langmuir.0c01832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This feature article describes recent trends and advances in structuring network polymers using a coordination-driven metal-organic framework (MOF)-based template approach to demonstrate the concept of crystal-controlled polymerization in confined nanospaces, forming tailored architectures ranging from simple linear one-dimensional macromolecules to tunable three-dimensional cross-linked network polymers and interwoven molecular architectures. MOF-templated network polymers combine the characteristics and advantages of crystalline MOFs (high porosity, structural regularity, and designability) with the intrinsic behaviors of soft polymers (flexibility, processability, stability, or biocompatibility) with widespread application possibilities and tunable properties. The article ends with a summary of the remaining challenges to be addressed, and future research opportunities in this field are discussed.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
13
|
Inorganic Molecular Complexes: Potential for Growth of a New Subject Area in Self-Assembly. Top Curr Chem (Cham) 2020; 378:30. [PMID: 32124072 DOI: 10.1007/s41061-020-0294-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 01/30/2023]
Abstract
The non-covalent assemblies among multiple non-identical metal complexes have scopes to develop a new subject area. There are infinite numbers of ways for different combinations among inorganic neutral or ionic complexes. Each partnering species of those molecular complexes would also have diversities by changing metal ions, ligands, oxidation states of metal ions, and coordination numbers. Keeping a view of the emergence of framework materials and self-assembled nano-structures of metal complexes, the non-covalently linked assemblies of inorganic molecular complexes would have scopes for new nano-dimensional materials. This account provides a systematic description of the different inorganic molecular complexes for a concerted effort to develop a new area that would have importance in applied materials.
Collapse
|
14
|
Lee G, Lee S, Oh S, Kim D, Oh M. Tip-To-Middle Anisotropic MOF-On-MOF Growth with a Structural Adjustment. J Am Chem Soc 2020; 142:3042-3049. [DOI: 10.1021/jacs.9b12193] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sojin Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dooyoung Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Zhao J, Shao Q, Ge S, Zhang J, Lin J, Cao D, Wu S, Dong M, Guo Z. Advances in Template Prepared Nano-Oxides and their Applications: Polluted Water Treatment, Energy, Sensing and Biomedical Drug Delivery. CHEM REC 2020; 20:710-729. [PMID: 31944590 DOI: 10.1002/tcr.201900093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The nano-oxide materials with special structures prepared by template methods have a good dispersion, regular structures and high specific surface areas. Therefore, in some areas, improved properties are observed than conventional bulk oxide materials. For example, in the treatment of dye wastewater, the treatment efficiency of adsorbents and catalytic materials prepared by template method was about 30 % or even higher than that of conventional samples. This review mainly focuses on the progress of inorganic, organic and biological templates in the preparation of micro- and nano- oxide materials with special morphologies, and the roles of the prepared materials as adsorbents and photocatalysts in dye wastewater treatment. The characteristics and advantages of inorganic, organic and biological template are also summarized. In addition, the applications of template method prepared oxides in the field of sensors, drug carrier, energy materials and other fields are briefly discussed with detailed examples.
Collapse
Affiliation(s)
- Junkai Zhao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dapeng Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.,Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
16
|
Tashiro S, Mitsui S, Burke DW, Kubota R, Matsushita N, Shionoya M. Core–shell metal–macrocycle framework (MMF): spatially selective dye inclusion through core-to-shell anisotropic transport along crystalline 1D-channels connected by epitaxial growth. CrystEngComm 2020. [DOI: 10.1039/d0ce00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Core–shell porous metal–macrocycle frameworks were fabricated via an epitaxial growth procedure to observe core-to-shell anisotropic transport of a dye.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Shinya Mitsui
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - David W. Burke
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Ryou Kubota
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Nobuyuki Matsushita
- Department of Chemistry
- College of Science and Research Center for Smart Molecules
- Rikkyo University
- Tokyo 171-8501
- Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
17
|
Nagata S, Kokado K, Sada K. Metal–organic framework tethering pH- and thermo-responsive polymer for ON–OFF controlled release of guest molecules. CrystEngComm 2020. [DOI: 10.1039/c9ce01731c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic framework tethering pH- and thermo-responsive polymer underwent ON–OFF controlled release of the included guest molecules.
Collapse
Affiliation(s)
- Shunjiro Nagata
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Kenta Kokado
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
- Faculty of Science
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
- Faculty of Science
| |
Collapse
|
18
|
Schmidt BVKJ. Metal-Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromol Rapid Commun 2019; 41:e1900333. [PMID: 31469204 DOI: 10.1002/marc.201900333] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Indexed: 12/23/2022]
Abstract
The development of metal-organic frameworks (MOFs) has had a significant impact on various fields of chemistry and materials science. Naturally, polymer science also exploited this novel type of material for various purposes, which is due to the defined porosity, high surface area, and catalytic activity of MOFs. The present review covers various topics of MOF/polymer research beginning with MOF-based polymerization catalysis. Furthermore, polymerization inside MOF pores as well as polymerization of MOF ligands is described, which have a significant effect on polymer structures. Finally, MOF/polymer hybrid and composite materials are highlighted, encompassing a range of material classes, like bulk materials, membranes, and dispersed materials. In the course of the review, various applications of MOF/polymer combinations are discussed (e.g., adsorption, gas separation, drug delivery, catalysis, organic electronics, and stimuli-responsive materials). Finally, past research is concluded and an outlook toward future development is provided.
Collapse
Affiliation(s)
- Bernhard V K J Schmidt
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
19
|
Wang K, Ye W, Yin W, Chai W, Tang B, Rui Y. One-step synthesis of MOF-derived Ga/Ga 2O 3@C dodecahedra as an anode material for high-performance lithium-ion batteries. Dalton Trans 2019; 48:12386-12390. [PMID: 31397458 DOI: 10.1039/c9dt02651g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Ga/Ga2O3@C dodecahedron composite with a high specific capacity of about 542 mA h g-1 after 200 cycles at the current density of 1000 mA g-1 was synthesized by one-step hydrogen reduction. This hierarchical homogeneous structure combined the Ga, Ga2O3 and carbon frameworks (from Ga-MOF) to exhibit excellent electrochemical performance.
Collapse
Affiliation(s)
- Ke Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenkai Ye
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Weihao Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenwen Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
20
|
Begum S, Hassan Z, Bräse S, Wöll C, Tsotsalas M. Metal-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Acc Chem Res 2019; 52:1598-1610. [PMID: 30977634 DOI: 10.1021/acs.accounts.9b00039] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The integration of a porous crystalline framework with soft polymers to create novel biomaterials has tremendous potential yet remains very challenging to date. Metal-organic framework (MOF)-templated polymers (MTPs) have emerged as persistent modular materials that can be tailored for desired biofunctions. These represent a novel class of hierarchically structured assemblies that combine the advantages of MOFs (precisely controlled structure, enormous diversity in framework topology, and high porosity) with the intrinsic behaviors of polymers (soft texture, flexibility, biocompatibility, and improved stability under physiological conditions). Transformation of surface-anchored MOFs (SURMOFs) via orthogonal covalent cross-linking yields surface-anchored polymeric gels (SURGELs) that open up exciting new opportunities to create soft nanoporous materials. SURGELs overcome the main drawbacks of SURMOFs, such as their limited stability under physiological conditions and their potential to release toxic metal ions, a substantial problem for applications in life sciences. MOF (SURMOF)-templated polymerization processes control the synthesis on a molecular level. Additionally, the morphology of the original MOF crystal template is replicated in the final network polymers. The MOF-templated polymerization can be induced by light, a catalyst, or temperature using several types of reactions, including thiol-ene, metal-free alkyne-azide click reactions, and Glaser-Hay coupling. In the case of photoinduced reactions, the cross-linking process can be locally confined, allowing control of the macroscopic patterning of the resulting network polymer. The use of layer-by-layer (lbl) techniques in the SURMOF synthesis serves the purpose of precise, layer-selective incorporation of functionalities via the combination of the postsynthetic modification and heteroepitaxy strategies. Transforming the functionalized SURMOF into a SURGEL allows the fabrication of polymers with desired bioactive functions at the internal or external surfaces. This Account highlights our ongoing research and inspiring progress in transforming SURMOFs into persistent, modular nanoporous materials tailored with biofunctions. Using cell culture studies, we present various aspects of SURGEL materials, such as the ability to deliver bioactive molecules to adhering cells on SURGEL surfaces, applications to advanced drug delivery systems, the ability to tune cell adhesion via surface modification, and the development of porphyrin-based SURGEL thin films with antimicrobial properties. Then we critically examine the challenges and limitations of current systems and discuss future research directions and new approaches for advancing MOF-templated biocompatible materials, emphasizing the need to include responsive and adaptive functionalities into the system. We emphasize that the hierarchical structure, ranging from the molecular to the macroscopic scale, allows for optimization of the material properties across all length scales relevant for cell-material interactions.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Feng L, Lv XL, Yan TH, Zhou HC. Modular Programming of Hierarchy and Diversity in Multivariate Polymer/Metal–Organic Framework Hybrid Composites. J Am Chem Soc 2019; 141:10342-10349. [DOI: 10.1021/jacs.9b03707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiu-Liang Lv
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tian-Hao Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
22
|
Luo Y, Ahmad M, Schug A, Tsotsalas M. Rising Up: Hierarchical Metal-Organic Frameworks in Experiments and Simulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901744. [PMID: 31106914 DOI: 10.1002/adma.201901744] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Controlled synthesis across several length scales, ranging from discrete molecular building blocks to size- and morphology-controlled nanoparticles to 2D sheets and thin films and finally to 3D architectures, is an advanced and highly active research field within both the metal-organic framework (MOF) domain and the overall material science community. Along with synthetic progress, theoretical simulations of MOF structures and properties have shown tremendous progress in both accuracy and system size. Further advancements in the field of hierarchically structured MOF materials will allow the optimization of their performance; however, this optimization requires a deep understanding of the different synthesis and processing techniques and an enhanced implementation of material modeling. Such modeling approaches will allow us to select and synthesize the highest-performing structures in a targeted rational manner. Here, recent progress in the synthesis of hierarchically structured MOFs and multiscale modeling and associated simulation techniques is presented, along with a brief overview of the challenges and future perspectives associated with a simulation-based approach toward the development of advanced hierarchically structured MOF materials.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Momin Ahmad
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Institute for Theoretical Solid State Theory, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputer Centre, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| |
Collapse
|
23
|
Kim D, Lee G, Oh S, Oh M. Unbalanced MOF-on-MOF growth for the production of a lopsided core–shell of MIL-88B@MIL-88A with mismatched cell parameters. Chem Commun (Camb) 2019; 55:43-46. [DOI: 10.1039/c8cc08456d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical unbalanced MOF-on-MOF growth is demonstrated for the production of a lopsided core–shell of MIL-88B@MIL-88A with mismatched cell parameters.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry
- Yonsei University
- Seoul 120-749
- Korea
| | - Gihyun Lee
- Department of Chemistry
- Yonsei University
- Seoul 120-749
- Korea
| | - Sojin Oh
- Department of Chemistry
- Yonsei University
- Seoul 120-749
- Korea
| | - Moonhyun Oh
- Department of Chemistry
- Yonsei University
- Seoul 120-749
- Korea
| |
Collapse
|
24
|
Bentz KC, Cohen SM. Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| |
Collapse
|
25
|
Bentz KC, Cohen SM. Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angew Chem Int Ed Engl 2018; 57:14992-15001. [DOI: 10.1002/anie.201806912] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| |
Collapse
|
26
|
Le Ouay B, Uemura T. Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Isr J Chem 2018. [DOI: 10.1002/ijch.201800074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin Le Ouay
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
- CREST, Japan Science and Technology Agency 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
- Department of Applied Chemistry, Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| |
Collapse
|
27
|
Mochizuki Y, Oka C, Ishiwata T, Kokado K, Sada K. Crystal Crosslinked Gels for the Deposition of Inorganic Salts with Polyhedral Shapes. Gels 2018; 4:E16. [PMID: 30674792 PMCID: PMC6318672 DOI: 10.3390/gels4010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Biomineralization has been given a great deal of attention by materials chemists because of its low environmental load and sustainability. With the goal of synthesizing such processes, various methods have been developed, especially for inorganic salts of calcium. In this report, we focused on the deposition of inorganic salts, such as calcium carbonate and calcium phosphate using crystal crosslinked gels (CCG), which are prepared by crystal crosslinking of metal-organic frameworks (MOFs). Due to the crystalline nature of MOFs, CCGs intrinsically possess polyhedral shapes derived from the original MOF crystals. As the result of deposition, the obtained inorganic salts also exhibited a polyhedral shape derived from the CCG. The deposition mainly occurred near the surface of the CCG, and the amorphous nature of the deposited inorganic salts was also confirmed.
Collapse
Affiliation(s)
- Yumi Mochizuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Chihiro Oka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Takumi Ishiwata
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Kenta Kokado
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|