1
|
De Oliveira Silva A, Masand SA, Farah AO, Laddusaw J, Urbina K, Rodríguez-Alvarado M, Lalancette RA, Cheong PHY, Brenner-Moyer SE. Organocatalytic Enantioselective [1,2]-Stevens Rearrangement of Azetidinium Salts. J Org Chem 2024; 89:9063-9067. [PMID: 38847523 DOI: 10.1021/acs.joc.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The first organocatalyzed enantioselective [1,2]-Stevens rearrangement is reported. 4-Alkylideneproline derivatives are produced in up to 86% yield and in up to 90:10 er, with recrystallization enhancing er up to >99.5:0.5. Product configuration was opposite that predicted by existing stereochemical models for this organocatalyst class, and DFT calculations revealed a novel mode of asymmetric induction. The adaptability of this catalytic strategy for asymmetric [1,2]-Stevens rearrangements of other heterocyclic amines was demonstrated.
Collapse
Affiliation(s)
- Ana De Oliveira Silva
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shruti A Masand
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Jacqueline Laddusaw
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Kelvin Urbina
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | | | - Roger A Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Stacey E Brenner-Moyer
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Additions of N, O, and S heteroatoms to metal-supported carbenes: Mechanism and synthetic applications in modern organic chemistry. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Dequina HJ, Schomaker JM. Aziridinium Ylides: Underutilized Intermediates for Complex Amine Synthesis. TRENDS IN CHEMISTRY 2020; 2:874-887. [PMID: 33665590 DOI: 10.1016/j.trechm.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Harnessing the chemistry of onium ylide intermediates generated from transition metal catalysis is a powerful strategy to convert simple precursors into complex scaffolds. While the chemistry of onium ylides has been studied for over three decades, transformations of aziridinium ylides have just recently emerged as a versatile way to exploit the strain of these reactive intermediates to furnish densely functionalized N-heterocycles in a highly stereocontrolled manner. Herein, we provide a short overview of the key concepts and recent developments in this area, with a focus on how mechanistic studies to delineate the factors controlling the reactivity of aziridinium ylides can stimulate fruitful future investigations.
Collapse
Affiliation(s)
- Hillary J Dequina
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Lenstra DC, Wolf JJ, Mecinović J. Catalytic Staudinger Reduction at Room Temperature. J Org Chem 2019; 84:6536-6545. [PMID: 31050295 DOI: 10.1021/acs.joc.9b00831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report an efficient catalytic Staudinger reduction at room temperature that enables the preparation of a structurally diverse set of amines from azides in excellent yields. The reaction is based on the use of catalytic amounts of triphenylphosphine as a phosphine source and diphenyldisiloxane as a reducing agent. Our catalytic Staudinger reduction exhibits a high chemoselectivity, as exemplified by reduction of azides over other common functionalities, including nitriles, alkenes, alkynes, esters, and ketones.
Collapse
Affiliation(s)
- Danny C Lenstra
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , Nijmegen 6525 AJ , The Netherlands
| | - Joris J Wolf
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , Nijmegen 6525 AJ , The Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , Nijmegen 6525 AJ , The Netherlands.,Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , Odense 5230 , Denmark
| |
Collapse
|
5
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Schmid SC, Guzei IA, Fernández I, Schomaker JM. Ring Expansion of Bicyclic Methyleneaziridines via Concerted, Near-Barrierless [2,3]-Stevens Rearrangements of Aziridinium Ylides. ACS Catal 2018; 8:7907-7914. [PMID: 30294503 PMCID: PMC6173328 DOI: 10.1021/acscatal.8b02206] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of densely functionalized azetidinesin a highly stereocontrolled manner is challenging, but interest in the bioactivities of these small heterocycles has stimulated methods for their preparation. We recently reported a one-carbon ring expansion of bicyclic methylene aziridines under dirhodium catalysis capable of delivering enantioenriched azetidines. This work explores this ring expansion using computational and experimental studies. DFT computations indicate that the reaction proceeds through formation of an aziridinium ylide, which is precisely poised for concerted, asynchronous ring-opening/closing to deliver the azetidines in a [2,3]-Stevens-type rearrangement. The concerted nature of this rearrangement is responsible for the stereospecificity of the reaction, where axial chirality from the initial allene substrate is transferred to the azetidine product with complete fidelity. The computed mechanistic pathway highlights the key roles of the olefin and the rigid structure of the methylene aziridine in differentiating our observed ring expansion from competing cheletropic elimination pathways noted with ylides derived from typical aziridines.
Collapse
Affiliation(s)
- Steven C. Schmid
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Israel Fernández
- Departamento de Química Organica I and Centro de Innovacioń en Química Avazanda (ORFEO−CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Kowalkowska A, Jończyk A, Maurin JK. Domino Reaction of Pyrrolidinium Ylides: Michael Addition/[1,2]-Stevens Rearrangement. J Org Chem 2018. [PMID: 29533069 DOI: 10.1021/acs.joc.7b03278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel domino reaction featuring a Michael addition/[1,2]-Stevens rearrangement reaction of pyrrolidinium ylides with electrophilic alkenes is described. Ylides generated under mild conditions from 2-aryl- N-cyanomethyl- N-methylpyrrolidinium salts entered the Michael addition, followed by a [1,3]-hydrogen shift and finally the [1,2]-Stevens rearrangement to give 3-aryl-2-cyano-2-(2-EWG-ethyl)-1-methylpiperidines.
Collapse
Affiliation(s)
- Anna Kowalkowska
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego St. 3 , 00-664 Warsaw , Poland
| | - Andrzej Jończyk
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego St. 3 , 00-664 Warsaw , Poland
| | - Jan K Maurin
- National Medicines Institute , Chełmska St. 30/34 , 00-725 Warsaw , Poland.,National Centre for Nuclear Research , Andrzeja Sołtana 7 St. , 05-400 Otwock , Poland
| |
Collapse
|