1
|
Izquierdo-García P, Fernández-García JM, Martín N. Twenty Years of Graphene: From Pristine to Chemically Engineered Nano-Sized Flakes. J Am Chem Soc 2024; 146:32222-32234. [PMID: 39537345 PMCID: PMC11613509 DOI: 10.1021/jacs.4c12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
It is a celebratory moment for graphene! This year marks the 20th anniversary of the discovery of this amazing material by Geim and Novoselov. Curiously, it coincides with the century mark of graphite's layered structure discovery. Since the discovery of graphene with the promise that its outstanding properties would change the world, society often wonders where is graphene? In this context, their discoverers said in 2005, "despite the reigning optimism about graphene-based electronics, "graphenium" microprocessors are unlikely to appear for the next 20 years". Today, possibilities for graphene are endless! It can be used in electronics, photonics, fuel cells, energy storage, artificial intelligence, biomedicine, and even cultural heritage or sports. Additionally, the electronic properties of this material have been modified in fascinating ways. Bilayer graphene sheets have been found to be superconductive when twisted at a "magic angle", leading to a new and exciting field of research known as "moiré quantum materials" or "twistronics". Additionally, small graphene fragments with nanometer sizes undergo a quantum confinement effect of electrons, affording semiconductive materials with applications in optoelectronics. Organic synthesis allows the preparation of molecules with a graphene-like pattern with total control of the shape and size, exhibiting a big catalog of chiroptical and optoelectronic properties. This Perspective shows some of the fascinating milestones raised in the field of graphene-like materials from a chemical point of view, including functionalization strategies employed to chemically modify the topology and the properties of pristine graphene as well as the rising molecular graphenes.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús M. Fernández-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nazario Martín
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Garrido M, Naranjo A, Pérez EM. Characterization of emerging 2D materials after chemical functionalization. Chem Sci 2024; 15:3428-3445. [PMID: 38455011 PMCID: PMC10915849 DOI: 10.1039/d3sc05365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical modification of 2D materials has proven a powerful tool to fine tune their properties. With this motivation, the development of new reactions has moved extremely fast. The need for speed, together with the intrinsic heterogeneity of the samples, has sometimes led to permissiveness in the purification and characterization protocols. In this review, we present the main tools available for the chemical characterization of functionalized 2D materials, and the information that can be derived from each of them. We then describe examples of chemical modification of 2D materials other than graphene, focusing on the chemical description of the products. We have intentionally selected examples where an above-average characterization effort has been carried out, yet we find some cases where further information would have been welcome. Our aim is to bring together the toolbox of techniques and practical examples on how to use them, to serve as guidelines for the full characterization of covalently modified 2D materials.
Collapse
|
3
|
Svatek S, Sacchetti V, Rodríguez-Pérez L, Illescas BM, Rincón-García L, Rubio-Bollinger G, González MT, Bailey S, Lambert CJ, Martín N, Agraït N. Enhanced Thermoelectricity in Metal-[60]Fullerene-Graphene Molecular Junctions. NANO LETTERS 2023; 23:2726-2732. [PMID: 36970777 PMCID: PMC10103166 DOI: 10.1021/acs.nanolett.3c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The thermoelectric properties of molecular junctions consisting of a metal Pt electrode contacting [60]fullerene derivatives covalently bound to a graphene electrode have been studied by using a conducting-probe atomic force microscope (c-AFM). The [60]fullerene derivatives are covalently linked to the graphene via two meta-connected phenyl rings, two para-connected phenyl rings, or a single phenyl ring. We find that the magnitude of the Seebeck coefficient is up to nine times larger than that of Au-C60-Pt molecular junctions. Moreover, the sign of the thermopower can be either positive or negative depending on the details of the binding geometry and on the local value of the Fermi energy. Our results demonstrate the potential of using graphene electrodes for controlling and enhancing the thermoelectric properties of molecular junctions and confirm the outstanding performance of [60]fullerene derivatives.
Collapse
Affiliation(s)
- Simon
A. Svatek
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
| | - Valentina Sacchetti
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Laura Rodríguez-Pérez
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Beatriz M. Illescas
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Laura Rincón-García
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
| | - Gabino Rubio-Bollinger
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia
de Materiales “Nicolás Cabrera” (INC), Facultad
de Ciencias, Universidad Autónoma
de Madrid, C/Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| | - M. Teresa González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | - Steven Bailey
- Department
of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Colin J. Lambert
- Department
of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Nazario Martín
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Nicolás Agraït
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia
de Materiales “Nicolás Cabrera” (INC), Facultad
de Ciencias, Universidad Autónoma
de Madrid, C/Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| |
Collapse
|
4
|
Vázquez‐Nakagawa M, Rodríguez‐Pérez L, Martín N, Herranz MÁ. Supramolecular Assembly of Edge Functionalized Top-Down Chiral Graphene Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202211365. [PMID: 36044587 PMCID: PMC9828669 DOI: 10.1002/anie.202211365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/12/2023]
Abstract
The construction of supramolecular assemblies of heterogeneous materials at the nanoscale is an open challenge in science. Herein, new chiral graphene quantum dots (GQDs) prepared by amidation reaction introducing chiral amide groups and pyrene moieties into the periphery of GQDs are described. The analytical and spectroscopic data show an efficient chemical functionalization and the morphological study of the supramolecular ensembles using SEM and AFM microscopies reveals the presence of highly ordered fibers of several micrometers length. Fluorescence studies, using emission spectroscopy and confocal microscopy, reveal that the fibers stem from the π-π stacking of both pyrenes and GQDs, together with the hydrogen bonding interactions of the amide groups. Circular dichroism analysis supports the chiral nature of the supramolecular aggregates.
Collapse
Affiliation(s)
- Mikiko Vázquez‐Nakagawa
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
| | - Laura Rodríguez‐Pérez
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
| | - Nazario Martín
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
- IMDEA-Nanocienciac/Faraday 9, Campus Cantoblanco28049MadridSpain
| | - M. Ángeles Herranz
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
| |
Collapse
|
5
|
Vázquez-Nakagawa M, Rodríguez-Pérez L, Martin N, Herranz MÁ. Supramolecular Assembly of Edge Functionalized Top‐down Chiral Graphene Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Nazario Martin
- University Complutense Faculty of Chemistry 28040 Madrid SPAIN
| | | |
Collapse
|
6
|
Puente Santiago AR, Fernandez‐Delgado O, Gomez A, Ahsan MA, Echegoyen L. Fullerenes as Key Components for Low‐Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alain R. Puente Santiago
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Olivia Fernandez‐Delgado
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Ashley Gomez
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Md Ariful Ahsan
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| |
Collapse
|
7
|
Puente Santiago AR, Fernandez‐Delgado O, Gomez A, Ahsan MA, Echegoyen L. Fullerenes as Key Components for Low‐Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angew Chem Int Ed Engl 2020; 60:122-141. [PMID: 33090642 DOI: 10.1002/anie.202009449] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alain R. Puente Santiago
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Olivia Fernandez‐Delgado
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Ashley Gomez
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Md Ariful Ahsan
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| |
Collapse
|
8
|
Garrido M, Volland MK, Münich PW, Rodríguez-Pérez L, Calbo J, Ortí E, Herranz MÁ, Martín N, Guldi DM. Mono- and Tripodal Porphyrins: Investigation on the Influence of the Number of Pyrene Anchors in Carbon Nanotube and Graphene Hybrids. J Am Chem Soc 2019; 142:1895-1903. [DOI: 10.1021/jacs.9b10772] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Garrido
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Michel K. Volland
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Peter W. Münich
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Laura Rodríguez-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - M. Ángeles Herranz
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Cerón MR, Zhan C, Campbell PG, Freyman MC, Santoyo C, Echegoyen L, Wood BC, Biener J, Pham TA, Biener MM. Integration of Fullerenes as Electron Acceptors in 3D Graphene Networks: Enhanced Charge Transfer and Stability through Molecular Design. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28818-28822. [PMID: 31293150 DOI: 10.1021/acsami.9b06681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we report a concept that allows the integration of the characteristic properties of [60]fullerene in 3D graphene networks. In these systems, graphene provides high electrical conductivity and surface area while fullerenes add high electron affinity. We use molecular design to optimize the interaction between 3D graphene networks and fullerenes, specifically in the context of stability and charge transfer in an electrochemical environment. We demonstrated that the capacity of the 3D graphene network is significantly improved upon the addition of C60 and C60 monoadducts by providing additional acceptor states in the form of low-lying lowest unoccupied molecular orbitals of C60 and its derivative. Guided by experimental results and first-principles calculations, we synthesized and tested a C60 monoadduct with increased stability by strengthening the 3D graphene-C60 van-der-Waals interactions. The synthesis method and stabilization strategy presented here is expected to benefit the integration of graphene-C60 hybrid materials in solar cell and charge storage applications.
Collapse
Affiliation(s)
- Maira R Cerón
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Cheng Zhan
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Patrick G Campbell
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Megan C Freyman
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Christy Santoyo
- Department of Chemistry , University of Texas at El Paso , 500 W University Avenue , El Paso , Texas 79968 , United States
| | - Luis Echegoyen
- Department of Chemistry , University of Texas at El Paso , 500 W University Avenue , El Paso , Texas 79968 , United States
| | - Brandon C Wood
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Juergen Biener
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Tuan Anh Pham
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Monika M Biener
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| |
Collapse
|
10
|
Ferrero S, Barbero H, Miguel D, García-Rodríguez R, Álvarez CM. Dual-Tweezer Behavior of an Octapodal Pyrene Porphyrin-Based System as a Host for Fullerenes. J Org Chem 2019; 84:6183-6190. [PMID: 30993988 DOI: 10.1021/acs.joc.9b00362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of eight pyrene units in a single porphyrin core exhibits a great synergistic effect, resulting in high affinity toward C60 and C70. This octapyrene porphyrin is easily accessible by a straightforward two-step synthetic approach that involves an octuple Suzuki reaction. The new supramolecular platform can present single- or double-tweezer fullerene hosting behavior. The switch from double- to single-tweezer behavior is triggered by the simple coordination of Zn2+ to the porphyrin. Both the octapyrene porphyrin 2HPOP and its zinc metalloporphyrin analogue ZnPOP show very high affinity for C60 and C70, while simultaneously allowing the discrimination of C70 over C60 in a C60/C70 mixture. The use of 2HPOP and ZnPOP for the enrichment of real fullerene mixtures is also demonstrated.
Collapse
Affiliation(s)
- Sergio Ferrero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Celedonio M Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| |
Collapse
|
11
|
Kharissova OV, Kharisov BI, Oliva González CM. Carbon–Carbon Allotropic Hybrids and Composites: Synthesis, Properties, And Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Oxana V. Kharissova
- Universidad Autónoma de Nuevo León, Ave. Universidad
s/n, San Nicolás de los Garza, N.L. México C.P. 66455
| | - Boris I. Kharisov
- Universidad Autónoma de Nuevo León, Ave. Universidad
s/n, San Nicolás de los Garza, N.L. México C.P. 66455
| | - Cesar M. Oliva González
- Universidad Autónoma de Nuevo León, Ave. Universidad
s/n, San Nicolás de los Garza, N.L. México C.P. 66455
| |
Collapse
|
12
|
Chen M, Guan R, Yang S. Hybrids of Fullerenes and 2D Nanomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800941. [PMID: 30643712 PMCID: PMC6325629 DOI: 10.1002/advs.201800941] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/02/2018] [Indexed: 05/23/2023]
Abstract
Fullerene has a definite 0D closed-cage molecular structure composed of merely sp2-hybridized carbon atoms, enabling it to serve as an important building block that is useful for constructing supramolecular assemblies and micro/nanofunctional materials. Conversely, graphene has a 2D layered structure, possessing an exceptionally large specific surface area and high carrier mobility. Likewise, other emerging graphene-analogous 2D nanomaterials, such as graphitic carbon nitride (g-C3N4), transition-metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), and black phosphorus (BP), show unique electronic, physical, and chemical properties, which, however, exist only in the form of a monolayer and are typically anisotropic, limiting their applications. Upon hybridization with fullerenes, noncovalently or covalently, the physical/chemical properties of 2D nanomaterials can be tailored and, in most cases, improved, significantly extending their functionalities and applications. Here, an exhaustive review of all types of hybrids of fullerenes and 2D nanomaterials, such as graphene, g-C3N4, TMDs, h-BN, and BP, including their preparations, structures, properties, and applications, is presented. Finally, the prospects of fullerene-2D nanomaterial hybrids, especially the opportunity of creating unknown functional materials by means of hybridization, are envisioned.
Collapse
Affiliation(s)
- Muqing Chen
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringSynergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringSynergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringSynergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
13
|
Calbo J, de Juan A, Aragó J, Villalva J, Martín N, Pérez EM, Ortí E. Understanding the affinity of bis-exTTF macrocyclic receptors towards fullerene recognition. Phys Chem Chem Phys 2019; 21:11670-11675. [DOI: 10.1039/c9cp01735f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Embracing [60]fullerene: Quantification of the C60 affinity with a new series of exTTF macrocycles allows understanding the driving forces governing the supramolecular recognition upon increasing the alkyl ether chain size. Counterintuitively, an outside-ring complexation is found as the preferred arrangement over the expected inside-ring disposition.
Collapse
Affiliation(s)
- Joaquín Calbo
- Instituto de Ciencia Molecular
- Universidad de Valencia
- Spain
| | | | - Juan Aragó
- Instituto de Ciencia Molecular
- Universidad de Valencia
- Spain
| | | | - Nazario Martín
- IMDEA-Nanociencia
- 28049 Madrid
- Spain
- Departamento de Química Orgánica I
- Facultad de Química
| | | | - Enrique Ortí
- Instituto de Ciencia Molecular
- Universidad de Valencia
- Spain
| |
Collapse
|
14
|
Nuin E, Lloret V, Amsharov K, Hauke F, Abellán G, Hirsch A. Isomerically Pure Star-Shaped Triphenylene-Perylene Hybrids Involving Highly Extended π-Conjugation. Chemistry 2018; 24:4671-4679. [PMID: 29334163 PMCID: PMC5947138 DOI: 10.1002/chem.201705872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/17/2022]
Abstract
The synthesis and characterization of a new type of a highly conjugated heterocyclic π‐chromophore, consisting of a central triphenylene core fused with three perylene monoimide units (star‐shaped molecules), is described. By judicious bay functionalization with tert‐butylphenoxy substituents, aggregation was completely prevented by using 1,1,2,2‐tetrachloroethane, allowing for a straightforward purification and, for the very first time, the complete separation of the constitutional isomers by HPLC. Both isomers can be easily distinguished by means of several conventional spectroscopic techniques. Furthermore, we have illustrated the absence of supramolecular aggregates and enhanced processability by noncovalent functionalization of graphene substrates, showing an outstanding homogeneity and demonstrating a different doping behavior in both isomers, making it possible to distinguish them by Raman spectroscopy.
Collapse
Affiliation(s)
- Edurne Nuin
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Vicent Lloret
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany.,Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth, Germany
| | - Konstantin Amsharov
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Frank Hauke
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany.,Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth, Germany
| | - Gonzalo Abellán
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany.,Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth, Germany
| | - Andreas Hirsch
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany.,Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth, Germany
| |
Collapse
|
15
|
Calbo J, Sancho-García JC, Ortí E, Aragó J. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes. Molecules 2018; 23:molecules23010118. [PMID: 29316675 PMCID: PMC6017611 DOI: 10.3390/molecules23010118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/28/2022] Open
Abstract
Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene) with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.
Collapse
Affiliation(s)
- Joaquín Calbo
- Institute of Molecular Science, University of Valencia, 46980 Paterna (Valencia), Spain.
| | | | - Enrique Ortí
- Institute of Molecular Science, University of Valencia, 46980 Paterna (Valencia), Spain.
| | - Juan Aragó
- Institute of Molecular Science, University of Valencia, 46980 Paterna (Valencia), Spain.
| |
Collapse
|