1
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
2
|
Šagátová A, Kotrle K, Brachňaková B, Havlíček L, Nemec I, Herchel R, Hofbauerova M, Halahovets Y, Šiffalovič P, Čižmár E, Fellner OF, Šalitroš I. Above room temperature spin crossover in mononuclear iron(II) complexes featuring pyridyl-benzimidazole bidentate ligands adorned with aliphatic chains. Dalton Trans 2024; 53:14037-14045. [PMID: 39105652 DOI: 10.1039/d4dt01338g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two bidentate ligands (L1 = 1-pentyl-2-(pyridin-2-yl)-1H-benzimidazole and L2 = 1-heptyl-2-(pyridin-2-yl)-1H-benzimidazole) were employed for the synthesis of five mononuclear Fe(II) coordination compounds 1-5 containing perchlorate, tetrafluoroborate and triflate counterions. Single-crystal X-ray diffraction analysis confirmed the expected molecular structures of all the reported compounds, revealing a moderately distorted octahedral geometry of {FeN6} coordination chromophores. All five compounds exhibit thermal spin crossover with T1/2 temperatures allocated above 400 K. The theoretical calculations supported the experimental magnetic investigation and helped to explain the electronic structures of the reported complexes with respect to the occurrence of thermal spin state switching. In addition, compound 4 was employed for the preparation of Langmuir-Blodgett films and fabrication of molecular films using the method of spontaneous evaporation of the subphase. While the formation of Langmuir-Blodgett films was unsuccessful due to the instability of the compound at the water/air interface, the latter technique allowed the formation of molecular films of 4 with well-defined thickness and homogeneity.
Collapse
Affiliation(s)
- Alexandra Šagátová
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Kamil Kotrle
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barbora Brachňaková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Lubomír Havlíček
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Monika Hofbauerova
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04154 Košice, Slovakia
| | - Ondřej F Fellner
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
3
|
Liu ZK, Ji XY, Yu M, Li YX, Hu JS, Zhao YM, Yao ZS, Tao J. Proton-Induced Reversible Spin-State Switching in Octanuclear Fe III Spin-Crossover Metal-Organic Cages. J Am Chem Soc 2024; 146:22036-22046. [PMID: 39041064 DOI: 10.1021/jacs.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xue-Yang Ji
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
4
|
Koucký F, Dobrovolná T, Kotek J, Císařová I, Havlíčková J, Liška A, Kubíček V, Hermann P. Transition metal complexes of the (2,2,2-trifluoroethyl)phosphinate NOTA analogue as potential contrast agents for 19F magnetic resonance imaging. Dalton Trans 2024; 53:9267-9285. [PMID: 38596878 DOI: 10.1039/d4dt00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A new hexadentate 1,4,7-triazacyclononane-based ligand bearing three coordinating methylene-(2,2,2-trifluoroethyl)phosphinate pendant arms was synthesized and its coordination behaviour towards selected divalent (Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and trivalent (Cr3+, Fe3+, Co3+) transition metal ions was studied. The ligand forms stable complexes with late divalent transition metal ions (from Co2+ to Zn2+) and the complexes of these metal ions are formed above pH ∼3. A number of complexes with divalent metal ions were structurally characterized by means of single-crystal X-ray diffraction. The complex of the larger Mn2+ ion adopts a twisted trigonally antiprismatic geometry with a larger coordination cavity and smaller torsion of the pendant arms, whereas the smaller ions Ni2+, Cu2+ and Zn2+ form octahedral species with a smaller cavity and larger pendant arm torsion. In the case of the Co2+ complexes, both coordination arrangements were observed. The complexes with paramagnetic metal ions were studied from the point of view of potential utilization in 19F magnetic resonance imaging. A significant shortening of the 19F NMR longitudinal relaxation times was observed: a sub-millisecond range for complexes of Cr3+, Mn2+ and Fe3+ with symmetric electronic states (t2g3 and HS-d5), the millisecond range for the Ni2+ and Cu2+ complexes and tens of milliseconds for the Co2+ complex. Such short relaxation times are consistent with a short distance between the paramagnetic metal ion and the fluorine atoms (∼5.5-6.5 Å). Among the redox-active complexes (Mn3+/Mn2+, Fe3+/Fe2+, Co3+/Co2+, Cu2+/Cu+), the cobalt complexes show sufficient stability and a paramagnetic-diamagnetic changeover with the redox potential lying in a physiologically relevant range. Thus, the Co3+/Co2+ complex pair can be potentially used as a smart redox-responsive contrast agent for 19F MRI.
Collapse
Affiliation(s)
- Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Tereza Dobrovolná
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Alan Liška
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry AS CR, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| |
Collapse
|
5
|
Sundaresan S, Brooker S. Solution Spin Crossover Versus Speciation Effects: A Cautionary Tale. Inorg Chem 2023. [PMID: 37482662 DOI: 10.1021/acs.inorgchem.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Two acyclic tetradentate Schiff base ligands, HLX-OH (X = H and Br), were synthesised by 2:1 condensation of either 2-pyridinecarboxaldehyde or 5-bromo-2-pyridinecarboxaldehyde and 1,3-diamino-2-propanol and then used to prepare six mononuclear complexes, [FeII(HLX-OH)(NCE)2], with three different NCE co-ligands (E = BH3, Se, and S). The apparent solution spin crossover switching temperature, T1/2, of these 6 complexes, determined by Evans method NMR studies, is tuned by several factors: (a) substituent X present at the 5 position of the pyridine ring of the ligand, (b) E present in the NCE co-ligand, (c) solvent employed (P'), and (d) potentially also by speciation effects. In CD3CN, for the pair of NCE = NCBH3 complexes, when X = H, the complex is practically LS (extrapolated T1/2 ∼624 K), whereas when X = Br, it is far lower (373 K), which implies a higher field strength when X = H than when it is Br. The same trend, X = H results in a higher apparent T1/2 than X = Br, is seen for the other two pairs of complexes, with E = Se (429 > 351 K, ΔT1/2 = 78 K) or S (361 > 342 K, ΔT1/2 = 19 K). For the family of three X = Br complexes, the change of E from BH3 (373 K) to Se (351 K) to S (342 K) leads to an overall ΔT1/2(apparent) = 31 K, whereas the decreases are far more pronounced in the X = H family (BH3 ∼624 > Se 429 > S 361 K). Changing the solvent used from CD3CN to (CD3)2CO and CD3NO2, for [FeII(HLBr-OH)(NCE)2] with either E = BH3 or S, revealed excellent, and very similar, positive linear correlations (R2 = 0.99) of increasing solvent polarity index P' (from 5 to 7) with increasing apparent T1/2 of the complex (E = BH3 gave T1/2 300 < 373 < 451 K , ΔT1/2 = 151 K; E = S gave T1/2 288 < 342 < 427 K, ΔT1/2 = 147 K). Several other solvent parameters were also correlated with the apparent T1/2 of these complexes (R2 = 0.74-0.96). Excellent linear correlations (R2 = 0.99) are also obtained with the coordination ability (aTM) of the three NCE co-ligands with the apparent T1/2 in both families of compounds, [FeII(HLX-OH)(NCE)2] where X = H or Br. The 15N NMR chemical shifts of the nitrogen atom in the three NCE co-ligands (direct measurement) show modest correlations (R2 = 0.74 for LH-OH family and 0.80 for LBr-OH family) with the apparent T1/2 values of the corresponding complexes.
Collapse
Affiliation(s)
- Sriram Sundaresan
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
6
|
Kadakia RT, Ryan RT, Cooke DJ, Que EL. An Fe complex for 19F magnetic resonance-based reversible redox sensing and multicolor imaging. Chem Sci 2023; 14:5099-5105. [PMID: 37206407 PMCID: PMC10189869 DOI: 10.1039/d2sc05222a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Raphael T Ryan
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Daniel J Cooke
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| |
Collapse
|
7
|
Nikovskiy I, Aleshin DY, Novikov VV, Polezhaev AV, Khakina EA, Melnikova EK, Nelyubina YV. Selective Pathway toward Heteroleptic Spin-Crossover Iron(II) Complexes with Pyridine-Based N-Donor Ligands. Inorg Chem 2022; 61:20866-20877. [PMID: 36511893 DOI: 10.1021/acs.inorgchem.2c03270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new synthetic pathway is devised to selectively produce previously elusive heteroleptic iron(II) complexes of terpyridine and N,N'-disubstituted bis(pyrazol-3-yl)pyridines that stabilize the opposite spin states of the metal ion. Such a combination of the ligands in a series of the heteroleptic complexes induces the spin-crossover (SCO) not experienced by the homoleptic complexes of these ligands or shifts it to lower/higher temperatures respective to the SCO-active homoleptic complex. The midpoint temperatures of the resulting SCO span from ca. 200 K to the ambient temperature and beyond the highest temperature accessible by NMR spectroscopy and SQUID magnetometry. The proposed "one-pot" approach is applicable to other N-donor ligands to selectively produce heteroleptic complexes─including those inaccessible by alternative synthetic pathways─with highly tunable SCO behaviors for practical applications in sensing, switching, and multifunctional devices.
Collapse
Affiliation(s)
- Igor Nikovskiy
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| | - Dmitry Yu Aleshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia
| | - Valentin V Novikov
- Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, 141700Dolgoprudny, Russia
| | - Alexander V Polezhaev
- Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| | - Ekaterina A Khakina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,HSE University, Miasnitskaya Str., 20, 101000Moscow, Russia
| | - Elizaveta K Melnikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| |
Collapse
|
8
|
Mel’nikova EK, Nikovskii IA, Polezhaev AV, Nelyubina YV. Solvatomorphs of Iron(II) Complex with N,N'-Disubstituted 2,6-Bis(pyrazol-3-yl)pyridine with a Temperature-Induced Spin Transition in Solution. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422080048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The reaction of the tridentate ligand 4-(2,6-bis(5-tert-butyl-1-(2,6-dichlorophenyl)-1H-pyrazol-3-yl)pyridin-4-yl)benzonitrile (L) with iron(II) salt gave the complex [Fe(L)2](BF4)2, which was isolated in a pure state and characterized by elemental analysis, NMR spectroscopy, and X-ray diffraction as two crystal polymorphs differing in the nature of the solvent molecule in the crystal (solvatomorphs I and II). According to the results of X-ray diffraction study (CCDC nos. 2104367 (I), 2104368 (II)), the iron(II) ion in these compounds occurs in different spin states and does not undergo a temperature-induced spin transition, which was previously observed for this complex in solution. The details of supramolecular organization of two solvatomorphs that prevent this transition were studied using the Hirshfeld surface analysis.
Collapse
|
9
|
Du L, Helsper S, Nosratabad NA, Wang W, Fadool DA, Amiens C, Grant S, Mattoussi H. A Multifunctional Contrast Agent for 19F-Based Magnetic Resonance Imaging. Bioconjug Chem 2022; 33:881-891. [PMID: 35446553 DOI: 10.1021/acs.bioconjchem.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic resonance imaging, MRI, relying on 19F nuclei has attracted much attention, because the isotopes exhibit a high gyromagnetic ratio (comparable to that of protons) and have 100% natural abundance. Furthermore, due to the very low traces of intrinsic fluorine in biological tissues, fluorine labeling allows easy visualization in vivo using 19F-based MRI. However, one of the drawbacks of the available fluorine tracers is their very limited solubility in water. Here, we detail the design and preparation of a set of water-compatible fluorine-rich polymers as contrast agents that can enhance the effectiveness of 19F-based MRI. The agents are synthesized using the nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) copolymer and a mixture of amine-appended fluorine groups and polyethylene glycol (PEG) blocks. This allows control over the polymer architecture and stoichiometry, resulting in good affinity to water solutions. We further investigate the effects of introducing additional segmental mobility to the fluorine moieties in the polymer, by inserting a PEG linker between the moieties and the polymer backbone. We find that controlling the polymer stoichiometry and introducing additional segmental mobility enhance the NMR signals and narrow the peak profile. In particular, we assess the impact of the PEG linker on T2* and T1 relaxation times, using a series of gradient-recalled echo images with varying echo times, TE, or recovery time, TR, respectively. We find that for equivalent concentrations, the PEG linker greatly increases T2*, while maintaining high T1 values, as compared to polymers without this linker. Phantom images collected from these compounds show bright signals over a background with high intensities.
Collapse
Affiliation(s)
- Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States.,FAMU-FSU Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States
| | - Neda Arabzadeh Nosratabad
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Debra Ann Fadool
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Catherine Amiens
- LCC-CNRS, Université de Toulouse, UPS, 205 route de Narbonne, BP 44099, F-31077-Toulouse, Cedex 4, France
| | - Samuel Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States.,FAMU-FSU Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Aleshin D, Nikovskiy I, Novikov VV, Polezhaev AV, Melnikova EK, Nelyubina YV. Room-Temperature Spin Crossover in a Solution of Iron(II) Complexes with N, N'-Disubstituted Bis(pyrazol-3-yl)pyridines. ACS OMEGA 2021; 6:33111-33121. [PMID: 34901662 PMCID: PMC8655922 DOI: 10.1021/acsomega.1c05463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 05/15/2023]
Abstract
Here, we report a combined study of the effects of two chemical modifications to an N,N'-disubstituted bis(pyrazol-3-yl)pyridine (3-bpp) and of different solvents on the spin-crossover (SCO) behavior in otherwise high-spin iron(II) complexes by solution NMR spectroscopy. The observed stabilization of the low-spin state by electron-withdrawing substituents in the two positions of the ligand that induce opposite electronic effects in SCO-active iron(II) complexes of isomeric bis(pyrazol-1-yl)pyridines (1-bpp) was previously hidden by NH functionalities in 3-bpp precluding the molecular design of SCO compounds with this family of ligands. With the recent SCO-assisting substituent design, the uncovered trends converged toward the first iron(II) complex of N,N'-disubstituted 3-bpp to undergo an almost complete SCO centered at room temperature in a less polar solvent of a high hydrogen-bond acceptor ability.
Collapse
Affiliation(s)
- Dmitry
Yu Aleshin
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of
Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Igor Nikovskiy
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of
Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Bauman
Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005 Moscow, Russia
| | - Valentin V. Novikov
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of
Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Moscow
Institute of Physics and Technology, Institutskiy per., 9, 141700 Dolgoprudny, Russia
| | - Alexander V. Polezhaev
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of
Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Bauman
Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005 Moscow, Russia
| | - Elizaveta K. Melnikova
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of
Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Lomonosov
Moscow State University, Leninskiye Gory, 1-3, 119991 Moscow, Russia
| | - Yulia V. Nelyubina
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of
Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Bauman
Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005 Moscow, Russia
- Moscow
Institute of Physics and Technology, Institutskiy per., 9, 141700 Dolgoprudny, Russia
| |
Collapse
|
11
|
Shen KY, Zhang CJ, Qu LY, Jiang SQ, Zhang Y, Tong ML, Bao X. Thermodriven, Acidity-Driven, and Photodriven Spin-State Switching in Pyridylacylhydrazoneiron(II) Complexes at or above Room Temperature. Inorg Chem 2021; 60:18225-18233. [PMID: 34784709 DOI: 10.1021/acs.inorgchem.1c02866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The magnetic bistability of spin-crossover (SCO) materials is highly appealing for applications as molecular switches and information storage. However, switching of the spin state around room temperature remains challenging. In this work, we reported the successful manipulation of the spin states of two iron(II) complexes (1-Fe and 2-Fe) based on pyridylacylhydrazone ligands in manifold ways. Both complexes are stabilized in the low-spin (LS) state at room temperature because of the strong ligand-field strength imposed by the ligands. 2-Fe shows thermoinduced SCO above room temperature with a very large and reproducible hysteresis (>50 K), while 1-Fe remains in the LS state up to 400 K. Acidity-driven spin-state switching of the two complexes was achieved at room temperature as a result of the complex dissociation and release of iron(II) in its high-spin (HS) state. Recovery of the complex is feasible upon further alkalization treatment in the case of 1-Fe, allowing bidirectional modulation of the spin state of the metal center. Light-driven one-way switching from LS to HS is also achieved by virtue of E-to-Z isomerization at the C═N double bond, which results in dissociation of the complex because of the poor binding affinity in the Z configuration.
Collapse
Affiliation(s)
- Kai Yan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chen Ju Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lei Yu Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shi Qing Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ming Liang Tong
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
12
|
Galadzhun I, Kulmaczewski R, Cespedes O, Halcrow MA. Iron/2,6‐Di(pyrazol‐1‐yl)pyridine Complexes with a Discotic Pattern of Alkyl or Alkynyl Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Iurii Galadzhun
- School of Chemistry University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | | | - Oscar Cespedes
- School of Physics and Astronomy University of Leeds EC Stoner Building Leeds LS2 9JT UK
| | | |
Collapse
|
13
|
Denisov GL, Nikovskii IA, Aliev TM, Polezhaev AV, Nelyubina YV. Spin State of Cobalt(II) 2,6-Bis(pyrazol-3-yl)pyridine Complex with a Redox-Active Ferrocenyl Substituent. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Waiczies S, Prinz C, Starke L, Millward JM, Delgado PR, Rosenberg J, Nazaré M, Waiczies H, Pohlmann A, Niendorf T. Functional Imaging Using Fluorine ( 19F) MR Methods: Basic Concepts. Methods Mol Biol 2021; 2216:279-299. [PMID: 33476007 PMCID: PMC9703275 DOI: 10.1007/978-1-0716-0978-1_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine (19F) MRI in biomedical research to study functional changes during disease states. 19F MRI represents an instrumental tool for the quantification of exogenous 19F substances in vivo. One of the major benefits of 19F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous 19F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of 19F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jens Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Siemens Healthcare, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
15
|
Wang H, Wong A, Lewis LC, Nemeth GR, Jordan VC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorg Chem 2020; 59:17712-17721. [PMID: 33216537 DOI: 10.1021/acs.inorgchem.0c02923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear μ-oxo and μ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and μ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ μ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.
Collapse
Affiliation(s)
| | | | - Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | - Jeffrey W Bacon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | |
Collapse
|
16
|
Salaam J, Pilet G, Hasserodt J. Multiple Sulfonation of Picolyl-Based Complexes Rendering Them Highly Water-Compatible. Inorg Chem 2020; 59:13812-13816. [DOI: 10.1021/acs.inorgchem.0c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy Salaam
- Laboratoire de Chimie, UMR 5182, CNRS, Ecolé Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69177, France
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69177, France
| | - Jens Hasserodt
- Laboratoire de Chimie, UMR 5182, CNRS, Ecolé Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69177, France
| |
Collapse
|
17
|
Xie D, Yu M, Xie Z, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination‐Induced Spin‐State Switches for
19
F Magnetic Resonance‐Based Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Da Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Meng Yu
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Zhu‐Lin Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Rahul T. Kadakia
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Chris Chung
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Lauren E. Ohman
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Emily L. Que
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| |
Collapse
|
18
|
Xie D, Yu M, Xie ZL, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination-Induced Spin-State Switches for 19 F Magnetic Resonance-Based Detection. Angew Chem Int Ed Engl 2020; 59:22523-22530. [PMID: 32790890 DOI: 10.1002/anie.202010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/15/2022]
Abstract
19 F magnetic resonance (MR) based detection coupled with well-designed inorganic systems shows promise in biological investigations. Two proof-of-concept inorganic probes that exploit a novel mechanism for 19 F MR sensing based on converting from low-spin (S=0) to high-spin (S=1) Ni2+ are reported. Activation of diamagnetic NiL1 and NiL2 by light or β-galactosidase, respectively, converts them into paramagnetic NiL0 , which displays a single 19 F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin-state switch is effective for sensing light or enzyme expression in live cells using 19 F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for 19 F MR based biosensing.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Zhu-Lin Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Chris Chung
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Lauren E Ohman
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| |
Collapse
|
19
|
Spin State Behavior of A Spin-Crossover Iron(II) Complex with N,N′-Disubstituted 2,6-bis(pyrazol-3-yl)pyridine: A Combined Study by X-ray Diffraction and NMR Spectroscopy. CRYSTALS 2020. [DOI: 10.3390/cryst10090793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of three different solvatomorphs of a new iron(II) complex with N,N′-disubstituted 2,6-bis(pyrazol-3-yl)pyridine, including those with the same lattice solvent, has been identified by X-ray diffraction under the same crystallization conditions with the metal ion trapped in the different spin states. A thermally induced switching between them, however, occurs in a solution, as unambiguously confirmed by the Evans technique and an analysis of paramagnetic chemical shifts, both based on variable-temperature NMR spectroscopy. The observed stabilization of the high-spin state by an electron-donating substituent contributes to the controversial results for the iron(II) complexes of 2,6-bis(pyrazol-3-yl)pyridines, preventing ‘molecular’ design of their spin-crossover activity; the synthesized complex being only the fourth of the spin-crossover (SCO)-active kind with an N,N′-disubstituted ligand.
Collapse
|
20
|
Nakanishi T, Hori Y, Wu S, Sato H, Okazawa A, Kojima N, Horie Y, Okajima H, Sakamoto A, Shiota Y, Yoshizawa K, Sato O. Three-Step Spin State Transition and Hysteretic Proton Transfer in the Crystal of an Iron(II) Hydrazone Complex. Angew Chem Int Ed Engl 2020; 59:14781-14787. [PMID: 32452130 DOI: 10.1002/anie.202006763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 11/06/2022]
Abstract
A proton-electron coupling system, exhibiting unique bistability or multistability of the protonated state, is an attractive target for developing new switchable materials based on proton dynamics. Herein, we present an iron(II) hydrazone crystalline compound, which displays the stepwise transition and bistability of proton transfer at the crystal level. These phenomena are realized through the coupling with spin transition. Although the multi-step transition with hysteresis has been observed in various systems, the corresponding behavior of proton transfer has not been reported in crystalline systems; thus, the described iron(II) complex is the first example. Furthermore, because proton transfer occurs only in one of the two ligands and π electrons redistribute in it, the dipole moment of the iron(II) complexes changes with the proton transfer, wherein the total dipole moment in the crystal was canceled out owing to the antiferroelectric-like arrangement.
Collapse
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuta Hori
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo, 196-8666, Japan
| | - Atsushi Okazawa
- Department of Basic Science, Graduation School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Current address: Division of Chemistry, Institution of Liberal Education, Nihon University School of Medicine, 30-1 Oyaguchi Uemachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Norimichi Kojima
- Department of Basic Science, Graduation School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yusuke Horie
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Hajime Okajima
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
21
|
Nakanishi T, Hori Y, Wu S, Sato H, Okazawa A, Kojima N, Horie Y, Okajima H, Sakamoto A, Shiota Y, Yoshizawa K, Sato O. Three‐Step Spin State Transition and Hysteretic Proton Transfer in the Crystal of an Iron(II) Hydrazone Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yuta Hori
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
- Center for Computational Sciences University of Tsukuba Tsukuba 305-8577 Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroyasu Sato
- Rigaku Corporation 3-9-12 Matsubaracho Akishima Tokyo 196-8666 Japan
| | - Atsushi Okazawa
- Department of Basic Science Graduation School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
- Current address: Division of Chemistry Institution of Liberal Education Nihon University School of Medicine 30-1 Oyaguchi Uemachi Itabashi-ku Tokyo 173-8610 Japan
| | - Norimichi Kojima
- Department of Basic Science Graduation School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Yusuke Horie
- Graduate School of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Hajime Okajima
- Graduate School of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
22
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
23
|
Pankratova Y, Aleshin D, Nikovskiy I, Novikov V, Nelyubina Y. In Situ NMR Search for Spin-Crossover in Heteroleptic Cobalt(II) Complexes. Inorg Chem 2020; 59:7700-7709. [PMID: 32383584 DOI: 10.1021/acs.inorgchem.0c00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we report the first successful attempt to identify spin-crossover compounds in solutions of metal complexes produced by mixing different ligands and an appropriate metal salt by variable-temperature nuclear magnetic resonance (NMR) spectroscopy. Screening the spin state of a cobalt(II) ion in a series of thus obtained homoleptic and heteroleptic compounds of terpyridines (terpy) and 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) by using this NMR-based approach, which only relies on the temperature behavior of chemical shifts, revealed the first cobalt(II) complexes with a 3-bpp ligand to undergo a thermally induced spin-crossover. A simple analysis of NMR spectra collected from mixtures of different compounds without their isolation or purification required by the current method of choice, the Evans technique, thus emerges as a powerful tool in a search for new spin-crossover compounds and their molecular design boosted by wide possibilities for chemical modifications in heteroleptic complexes.
Collapse
Affiliation(s)
- Yanina Pankratova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia.,Moscow State University, Leninskie gory, 1, 119991 Moscow, Russia
| | - Dmitry Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya pl., 9, 125047 Moscow, Russia
| | - Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Valentin Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny 141700, Moscow Region, Russia
| | - Yulia Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| |
Collapse
|
24
|
Yu X, Chen TY, Ye YS, Bao X. Spin crossover in mononuclear Fe(II) complexes based on a tetradentate ligand. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:174001. [PMID: 31914428 DOI: 10.1088/1361-648x/ab68f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three isostructural complexes with the formula [Fe(L5Me)(NCE)2]: L5Me = N,N'-bis(5-methyl-2-pyridylmethyl)ethane-1,2-diamine and E = S (1-S), E = Se (1-Se), E = BH3 (1-BH 3 ) have been synthesized and characterized by single-crystal x-ray diffraction, magnetic susceptibility and DSC studies. All the three derivatives are spin crossover (SCO) active, showing complete one-step spin conversion. The SCO midpoint temperatures (T 1/2) are 193 K for 1-S, 226 K for 1-Se, and 330 K for 1-BH 3 , which are among the highest values for the homologous Fe(II)-NCE complexes with comparable tetradentate ligands. The almost linear Fe-N ≡ C(E) angles are consistent with the strong ligand field (LF) strength imposed by these NCE- co-ligands. Strong hydrogen-like bonding N-H…E was observed to connect the molecules into 2D supramolecular sheets parallel to the bc plane. However, such supramolecular interaction is not sufficient enough to transmit strong cooperativity. A discussion on the factors governing the LF strength and the cooperativity has been made, based on the comparison of analogous complexes and also based on UV-vis spectroscopy studies of the Ni(II) complexes.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Caldwell MA, Brue CR, Whittemore TJ, Meade TJ. A Ln(III)-3-hydroxypyridine pH responsive probe optimized by DFT. RSC Adv 2020; 10:8994-8999. [PMID: 32274014 PMCID: PMC7144623 DOI: 10.1039/c9ra11058e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differences in tissue pH can be diagnostic of cancer and other conditions that shift cell metabolism. Paramagnetic probes are promising tools for pH mapping in vivo using magnetic resonance spectroscopy (MRS) as they provide uniquely shifted MR signals that change with pH. Here, we demonstrate a 3-hydroxy-6-methylpyridyl coordinating group as a new pH-responsive reporter group for Ln(III) MRS probes. The pH response of the complex was observed by UV-Vis, fluorescence, and NMR spectroscopies, and modeled using DFT. These results provide insight into the observed pH-dependent NMR spectrum of the complex. The protonation state of the hydroxypyridine changes the coordinating ability of the ligand, affecting the dipolar field of the lanthanide and the chemical shift of nearby reporter nuclei. The favorable pH response and coordination properties of the 3-hydroxypyridyl group indicates its potential for further development as a dual responsive-reporter group. Incorporation into optimized scaffolds for MRS detection may enable sensitive pH-mapping in vivo.
Collapse
Affiliation(s)
- Michael A Caldwell
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| | - Christopher R Brue
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| | - Tyler J Whittemore
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| |
Collapse
|
26
|
Halcrow MA. Manipulating metal spin states for biomimetic, catalytic and molecular materials chemistry. Dalton Trans 2020; 49:15560-15567. [DOI: 10.1039/d0dt01919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The relationship between ligand design and spin state in base metal compounds is surveyed. Implications and applications of these principles for light-harvesting dyes, catalysis and materials chemistry are summarised.
Collapse
|
27
|
Ozumerzifon TJ, Higgins RF, Joyce JP, Kolanowski JL, Rappé AK, Shores MP. Evidence for Reagent-Induced Spin-State Switching in Tripodal Fe(II) Iminopyridine Complexes. Inorg Chem 2019; 58:7785-7793. [DOI: 10.1021/acs.inorgchem.9b00340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarik J. Ozumerzifon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert F. Higgins
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Justin P. Joyce
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jacek L. Kolanowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Chen XQ, Cai YD, Jiang W, Peng G, Fang JK, Liu JL, Tong ML, Bao X. A Multi-Stimuli-Responsive Fe(II) SCO Complex Based on an Acylhydrazone Ligand. Inorg Chem 2019; 58:999-1002. [PMID: 30618249 DOI: 10.1021/acs.inorgchem.8b02922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An Fe(II) SCO complex based on an acylhydrazone ligand with an amino functional group has been prepared. The complex is able to dissociate and regather upon protonation and deprotonation, in both solid state and solution, accompanied by spin state switching, marked change of color, and distinct solubility in water. Moreover, the complex shows distinct magnetic responses toward formaldehyde and protic and nonprotic solvents, as a result of the different affinity of the amino functional site with those chemicals.
Collapse
Affiliation(s)
- Xiu-Qin Chen
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - You-De Cai
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Wei Jiang
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Guo Peng
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Jing-Kun Fang
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Jun-Liang Liu
- School of Chemistry , Sun Yat-Sen University , 510275 Guangzhou , P. R. China
| | - Ming-Liang Tong
- School of Chemistry , Sun Yat-Sen University , 510275 Guangzhou , P. R. China
| | - Xin Bao
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| |
Collapse
|
29
|
Thorarinsdottir AE, Harris TD. Dramatic enhancement in pH sensitivity and signal intensity through ligand modification of a dicobalt PARACEST probe. Chem Commun (Camb) 2019; 55:794-797. [DOI: 10.1039/c8cc09520e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A ratiometric dicobalt PARACEST pH probe that exhibits dramatic enhancements in sensitivity and signal intensity over analogous probes is reported.
Collapse
|
30
|
Towards Ni(II) complexes with spin switches for 19F MR-based pH sensing. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:89-96. [DOI: 10.1007/s10334-018-0698-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
|
31
|
Dhers S, Mondal A, Aguilà D, Ramírez J, Vela S, Dechambenoit P, Rouzières M, Nitschke JR, Clérac R, Lehn JM. Spin State Chemistry: Modulation of Ligand pKa by Spin State Switching in a [2×2] Iron(II) Grid-Type Complex. J Am Chem Soc 2018; 140:8218-8227. [DOI: 10.1021/jacs.8b03735] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Abhishake Mondal
- CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
- Solid State and Structural Chemistry Unit, Indian Institute of Science, C.V. Raman Road, Bangalore 560012, India
| | - David Aguilà
- CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Juan Ramírez
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Sergi Vela
- Laboratoire de Chimie Quantique, UMR 7177 CNRS, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Pierre Dechambenoit
- CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mathieu Rouzières
- CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jonathan R. Nitschke
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Rodolphe Clérac
- CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
32
|
Tsitovich PB, Tittiris TY, Cox JM, Benedict JB, Morrow JR. Fe(ii) and Co(ii) N-methylated CYCLEN complexes as paraSHIFT agents with large temperature dependent shifts. Dalton Trans 2018; 47:916-924. [PMID: 29260180 DOI: 10.1039/c7dt03812g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several complexes of Co(ii) or Fe(ii) with 1,4,7,10-tetraazacyclododecane (CYCLEN) appended with 1,7-(6-methyl)2-picolyl groups are studied as 1H NMR paraSHIFT agents (paramagnetic shift agents) for the registration of temperature. Two of the complexes, [Co(BMPC)]2+ and [Fe(BMPC)]2+, contain methyl groups only on the methyl picolyl pendents. Two other complexes, [Co(2MPC)]2+ and [Fe(2MPC)]2+, contain picolyl groups and also methyl groups on the macrocyclic amines. All macrocyclic complexes are in high spin form as shown by solution magnetic moments in the range of 5.0-5.9μBM and 5.3-5.8μBM for Co(ii) and Fe(ii) complexes, respectively. The 1H NMR spectra of both of the Fe(ii) complexes and one of the Co(ii) complexes are consistent with a predominant diastereomeric form in deuterium oxide solutions. The highly shifted methyl proton resonances for [Co(2MPC)]2+ appear at 164 and -113 ppm for macrocycle and pendent picolyl methyls and show temperature coefficients of -0.58 ppm °C-1 and 0.49 ppm °C-1, respectively. Fe(ii) complexes have less shifted methyl proton resonances and smaller temperature coefficients. The 1H resonances of [Fe(2MPC)]2+ appear at 105 ppm and -46 ppm with corresponding temperature coefficients (CT) of -0.29 ppm °C-1 and 0.22 ppm °C-1, respectively. The relatively narrow linewidths of [Fe(2MPC)]2+, however, produce superior CT/FWHM values of 0.44 and 0.31 °C-1 for the N-methyl and picolyl proton resonances where FWHM is the full width at half maximum of the 1H resonance. The crystal structure of [Co(BMPC)]Cl2 shows a six-coordinate Co(ii) bound to the macrocyclic amines and two pendent picolyl groups. The distorted trigonal prismatic geometry of the complex resembles that of an analogous complex containing four 6-methyl-2-picolyl groups, in which only two picolyl pendents are coordinated.
Collapse
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA.
| | | | | | | | | |
Collapse
|