1
|
Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent Imaging Probe Targeting Mitochondria Based on Supramolecular Host-Guest Assembly and Disassembly. ACS OMEGA 2022; 7:34268-34277. [PMID: 36188319 PMCID: PMC9520549 DOI: 10.1021/acsomega.2c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Fluorescent dyes and probes play an indispensable role in bioimaging. The mitochondrion is one of the crucial organelles which takes charge of energy production and is the primary site of aerobic respiration in the cell. To illuminate mitochondria, a series of supramolecular fluorescent imaging probes were developed based on the host-guest assembly of 1,4-bis[2-(4-pyridyl)ethenyl]-benzene (BPEB) derivatives and cucurbituril[6] (CB[6]). These host-guest conjugates can be efficiently internalized into cells due to their water solubility and target mitochondria according to their positive charges. In response to the intracellular microenvironments, these conjugates start dynamic disassembly. The released BPEBs show a highly hydrophobic feature, which can crystallize to form fluorescent solids that illuminate the mitochondria. The intracellular disassembly of the host-guest probes was evidenced by fluorescence lifetime imaging in situ. These smart mitochondrion-targeting fluorescent imaging probes can be available to investigate the structures and functions of mitochondria, which are of great significance in the intracellular dynamic transformation of supramolecular assemblies.
Collapse
Affiliation(s)
- Ning Chu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lili Cong
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jing Yue
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- College
of Chemical Engineering, Huanggang Normal
University, Huanggang, Hubei, 438000, P. R. China
| | - Weiqing Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center
for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R.
China
| |
Collapse
|
2
|
Zhang ZH, Lin RL, Yu XY, Chen LX, Tao Z, Xiao X, Wei G, Redshaw C, Liu JX. Encapsulation of l-valine, d-leucine and d-methionine by cucurbit[8]uril. CrystEngComm 2022. [DOI: 10.1039/d1ce01513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding interactions of cucurbit[8]uril (Q[8]) with l-valine, d-leucine, and d-methionine, both in aqueous solution and solid state, have been studied by 1H NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Zeng-Hui Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| | - Xiang-Yun Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Li-Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Gang Wei
- CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| |
Collapse
|
3
|
Shan P, Lin R, Liu M, Tao Z, Xiao X, Liu J. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Cheng S, Zhao W, Yang X, Meng Y, Wei L, Tao Z, Ma P. The binding behaviours between cyclopentanocucurbit[6]uril and three amino acids. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202120. [PMID: 33959363 PMCID: PMC8074881 DOI: 10.1098/rsos.202120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Binding behaviours between cyclopentanocucurbit[6]uril (CyP6Q[6]) and three amino acids have been investigated by means of X-ray crystallography, proton nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. The results showed that CyP6Q[6] forms a 1 : 2 inclusion complex with glycine, but 1 : 1 complexes with both leucine and lysine. Whereas the carboxyl group of glycine can enter the interior of the cavity of CyP6Q[6], only the alkyl chains of leucine and lysine can enter this cavity. Interestingly, leucine can adopt two different self-assembly modes upon its interaction with cucurbituril, depending on the external conditions, whereas glycine and lysine do not exhibit such behaviour.
Collapse
Affiliation(s)
- Siyuan Cheng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Weiwei Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xinan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Ye Meng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Liantong Wei
- Guiyang Bewg Water Co., Ltd., Guiyang 550001, People's Republic of China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Peihua Ma
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
5
|
Ramberg KO, Engilberge S, Guagnini F, Crowley PB. Protein recognition by cucurbit[6]uril: high affinity N-terminal complexation. Org Biomol Chem 2021; 19:837-844. [PMID: 33406171 DOI: 10.1039/d0ob02356f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The donut-shaped cucurbit[n]urils (Qn, n = 6-8) are rigid macrocyclic receptors with widespread use in protein recognition. To date, most applications have centred on the encapsulation of N-terminal aromatic residues by Q7 or Q8. Less attention has been placed on Q6, which can recognize lysine side chains due to its high affinity for alkylamines. In this work, we investigated protein-Q6 complexation by using NMR spectroscopy. Attempts to crystallize protein-Q6 complexes were thwarted by the crystallization of Q6. We studied four proteins that vary in size, net charge, and lysine content. In addition to Q6 interactions with specific Lys or dimethylated Lys residues, we report striking evidence for N-terminal recognition. High affinity (micromolar) binding occurred with the N-terminal Met-Lys motif present in one of the four model proteins. Engineering this feature into another model protein yielded a similar high affinity site. We also present evidence for Q8 binding at this N-terminal feature. These data expand the cucurbituril toolkit for protein sensing.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Francesca Guagnini
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
6
|
Li XX, Xu WT, Deng XY, Tian LF, Huang Y, Tao Z. Selective Identification of Phenylalanine Using Cucurbit[7,8]uril-Based Fluorescent Probes. Aust J Chem 2021. [DOI: 10.1071/ch20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interactions of two host–guest inclusion complexes comprised of cucurbit[7]uril (Q[7]) and cucurbit[8]uril (Q[8]) with a derivative of toluidine blue O (TB) have been investigated using 1H NMR and fluorescence spectroscopy. The experimental results revealed that the Q[7] host interacts with a TB molecule to form a 1:1 inclusion complex and the Q[8] host interacts with two TB guest molecules to form a 1:2 inclusion complex. The inclusion of the TB guest molecule within the Q[7] host gave rise to significant fluorescence enhancement, whereas the inclusion of the TB guest molecule within the Q[8] host resulted in significant fluorescence quenching. Further recognition experiments involving a series of l-α-amino acids revealed that the TB@Q[7] inclusion fluorescence probe exhibits high selectivity for the recognition of phenylalanine via significant fluorescence quenching in an aqueous solution, whereas the TB@Q[8] inclusion fluorescence probe also exhibited high selectivity for phenylalanine recognition via fluorescence enhancement in an aqueous solution.
Collapse
|
7
|
Xu W, Feng H, Zhao W, Huang C, Redshaw C, Tao Z, Xiao X. Amino acid recognition by a fluorescent chemosensor based on cucurbit[8]uril and acridine hydrochloride. Anal Chim Acta 2020; 1135:142-149. [PMID: 33070851 DOI: 10.1016/j.aca.2020.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/16/2023]
Abstract
A new fluorescent chemosensor comprised of cucurbit[8]uril (Q[8]) and acridine hydrochloride (AC) has been designed and utilized for the recognition of amino acids. The AC was encapsulated by the Q[8] cavity and formed a 1:2 host-guest inclusion complex both in solution (aqueous) and in the solid-state. Whilst free AC is known to be strongly fluorescent, this strong fluorescence was quenched in the inclusion complex Q [8]-AC. This non-fluorescent complex Q[8]-AC was capable of serving as a fluorescence "off-on" probe, and was able to recognize either L-Phe or L-Trp via the competitive interaction between L-Phe or L-Trp. Moreover, the pH responsive nature of the probe allowed for the detection of basic amino acids, namely L-Arg, L-His, or L-Lys). As a result, a fluorescence method for the detection of five amino acids using a single system has been developed.
Collapse
Affiliation(s)
- Weitao Xu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Huaming Feng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Weiwei Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Chunhua Huang
- National Research Center for Geoanalysis, China Geological Survey, Beijing, 100037, China
| | - Carl Redshaw
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Lin RL, Liu JX, Chen K, Redshaw C. Supramolecular chemistry of substituted cucurbit[ n]urils. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00529k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review covers important advances in the field of substituted cucurbit[n]urils.
Collapse
Affiliation(s)
- Rui-Lian Lin
- College of Chemistry and Chemical Engineering
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
- Nanjing 210044
| | - Carl Redshaw
- Department of Chemistry & Biochemistry
- University of Hull
- Hull HU6 7RX
- UK
| |
Collapse
|
9
|
Tian FY, Cheng RX, Zhang YQ, Tao Z, Zhu QJ. Specific Recognition of Methanol Using a Symmetric Tetramethylcucurbit[6]uril-Based Porous Supramolecular Assembly Incorporating Adsorbed Dyes. Aust J Chem 2020. [DOI: 10.1071/ch19586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A symmetric tetramethylcucurbit[6]uril-based porous supramolecular assembly was prepared in an aqueous H2SO4 solution (5M). The driving force for the formation of this assembly is mainly the outer surface interaction of Q[n], which includes the ion-dipole interaction of SO42− anions and the positive electrostatic potential of the outer surface of the symmetric tetramethylcucurbit[6]uril (TMeQ[6]), the dipole-dipole interactions between the positive electrostatic potential of the outer surface of TMeQ[6] and portal carbonyl oxygens of TMeQ[6], and the hydrogen bonding between lattice water molecules and portal carbonyl oxygen atoms in TMeQ[6]. The TMeQ[6]-based porous supramolecular assembly exhibits the characteristics of absorbed fluorophore guests (FGs), such as dyes and polycyclic compounds with different fluorescence characteristics. Moreover, the resulting luminescent assemblies (FG@As) can respond to certain volatile organic compounds; in particular, the luminescent assemblies of rhodamine B or pyrene display a unique fluorescence enhancement in response to methanol.
Collapse
|
10
|
Wang HY, Zhou Y, Lu JH, Liu QY, Chen GY, Tao Z, Xiao X. Supramolecular drug inclusion complex of Capecitabine with cucurbit[7]uril and inverted cucurbit[7]uril. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Fan Y, Gao R, Jiang Y, Bian B, Tao Z, Wei G, Xiao X. Interaction of pesticide pyroquilon with two different cucurbit[n]uril. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00936-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Xiao Z, Yang W, Yan F, Ji L, Li W, Wang W. Assembly of calix[4]arene carboxylic acid derivatives by hydrogen bonding. CrystEngComm 2019. [DOI: 10.1039/c8ce01655k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallisation of seven calix[4]arene derivatives leads to the formation of a “head-to-head” or “head-to-tail” dimer motif through hydrogen bonding.
Collapse
Affiliation(s)
- Zufeng Xiao
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
- PR China
| | - Weiping Yang
- Key Laboratory of Tobacco Flavor Basic Research
- Zhengzhou Tobacco Research Institute of CNTC
- 450001 Zhengzhou
- China
| | - Fengyi Yan
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
- PR China
| | - Lingbo Ji
- Key Laboratory of Tobacco Flavor Basic Research
- Zhengzhou Tobacco Research Institute of CNTC
- 450001 Zhengzhou
- China
| | - Wei Li
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
- PR China
| | - Wei Wang
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
- PR China
| |
Collapse
|
13
|
Yang L, Kan J, Wang X, Zhang Y, Tao Z, Liu Q, Wang F, Xiao X. Study on the Binding Interaction of the α,α',δ,δ'-Tetramethylcucurbit[6]uril With Biogenic Amines in Solution and the Solid State. Front Chem 2018; 6:289. [PMID: 30065925 PMCID: PMC6057143 DOI: 10.3389/fchem.2018.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 12/03/2022] Open
Abstract
1H NMR spectroscopy and MALDI-TOF mass spectrometry were utilized to examine the binding interaction of α,α',δ,δ'-tetramethylcucurbit[6]uril (TMeQ[6]) and six biogenic amines (spermine, spermidine, 2-phenethylamine, tyramine, histamine, and tryptamine). Their 1H NMR spectra both at pD = 7 and pD = 3 revealed that four biogenic amines (spermine, spermidine, 2-phenethylamine, and histamine) can fit in the TMeQ[6] cavity, respectively, and other biogenic amines were located outside of the TMeQ[6] portal. In addition, a solid-state evaluation with single-crystal X-ray diffraction analysis showed the binding interaction of spermine, spermidine, 2-phenethylamine, and tyramine with TMeQ[6].
Collapse
Affiliation(s)
- Liguo Yang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinglan Kan
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Xin Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Yonghui Zhang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Fang Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Meng TH, Zhou Y, Gao ZZ, Liu QY, Tao Z, Xiao X. A study of the inclusion of 1-hexyl-4-(4-pyridyl)pyridinium bromide in cucurbit[6]uril. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0781-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Danylyuk O. Exploring cucurbit[6]uril–peptide interactions in the solid state: crystal structure of cucurbit[6]uril complexes with glycyl-containing dipeptides. CrystEngComm 2017. [DOI: 10.1039/c7ce00881c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrocyclic host cucurbit[6]uril forms supramolecular complexes with dipeptides sequenced as Gly-X, where X is either an aromatic amino acid residue Phe, Tyr, and Trp or Gly in the solid state.
Collapse
Affiliation(s)
- Oksana Danylyuk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|