1
|
Okada K, Mashita R, Fukatsu A, Takahashi M. Polarization-dependent plasmonic heating in epitaxially grown multilayered metal-organic framework thin films embedded with Ag nanoparticles. NANOSCALE ADVANCES 2023; 5:1795-1801. [PMID: 36926578 PMCID: PMC10012874 DOI: 10.1039/d2na00882c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of metal-organic framework (MOF) thin films with various functionalities has paved the way for research into a wide variety of applications. MOF-oriented thin films can exhibit anisotropic functionality in the not only out-of-plane but also in-plane directions, making it possible to utilize MOF thin films for more sophisticated applications. However, the functionality of oriented MOF thin films has not been fully exploited, and finding novel anisotropic functionality in oriented MOF thin films should be cultivated. In the present study, we report the first demonstration of polarization-dependent plasmonic heating in a MOF oriented film embedded with Ag nanoparticles (AgNPs), pioneering an anisotropic optical functionality in MOF thin films. Spherical AgNPs exhibit polarization-dependent plasmon-resonance absorption (anisotropic plasmon damping) when incorporated into an anisotropic lattice of MOFs. The anisotropic plasmon resonance results in a polarization-dependent plasmonic heating behavior; the highest elevated temperature was observed in case the polarization of incident light is parallel to the crystallographic axis of the host MOF lattice favorable for the larger plasmon resonance, resulting in polarization-controlled temperature regulation. Such spatially and polarization selective plasmonic heating offered by the use of oriented MOF thin films as a host can pave the way for applications such as efficient reactivation in MOF thin film sensors, partial catalytic reactions in MOF thin film devices, and soft microrobotics in composites with thermo-responsive materials.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Risa Mashita
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| |
Collapse
|
2
|
Singbumrung K, Motina K, Inprasit W, Pisitsak P, Inprasit T. A green functionalized method of Cu-BTC on poly(vinyl alcohol)/chitosan composite mat and its antibacterial potential. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
3
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Marshall CR, Dvorak JP, Twight LP, Chen L, Kadota K, Andreeva AB, Overland AE, Ericson T, Cozzolino AF, Brozek CK. Size-Dependent Properties of Solution-Processable Conductive MOF Nanocrystals. J Am Chem Soc 2022; 144:5784-5794. [PMID: 35344360 DOI: 10.1021/jacs.1c10800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diverse optical, magnetic, and electronic behaviors of most colloidal semiconductor nanocrystals emerge from materials with limited structural and elemental compositions. Conductive metal-organic frameworks (MOFs) possess rich compositions with complex architectures but remain unexplored as nanocrystals, hindering their incorporation into scalable devices. Here, we report the controllable synthesis of conductive MOF nanoparticles based on Fe(1,2,3-triazolate)2. Sizes can be tuned to as small as 5.5 nm, ensuring indefinite colloidal stability. These solution-processable MOFs can be analyzed by solution-state spectroscopy and electrochemistry and cast into conductive thin films with excellent uniformity. This unprecedented analysis of MOF materials reveals a strong size dependence in optical and electronic behaviors sensitive to the intrinsic porosity and guest-host interactions of MOFs. These results provide a radical departure from typical MOF characterization, enabling insights into physical properties otherwise impossible with bulk analogues while offering a roadmap for the future of MOF nanoparticle synthesis and device fabrication.
Collapse
Affiliation(s)
- Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Josh P Dvorak
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Liam P Twight
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Lan Chen
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kentaro Kadota
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Anastasia B Andreeva
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Alexandra E Overland
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Thomas Ericson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Anthony F Cozzolino
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
5
|
Takahashi M. Oriented Films of Metal-Organic Frameworks on Metal Hydroxides via Heteroepitaxial Growth. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
7
|
Okada K, Nakanishi M, Ikigaki K, Tokudome Y, Falcaro P, Doonan CJ, Takahashi M. Controlling the alignment of 1D nanochannel arrays in oriented metal-organic framework films for host-guest materials design. Chem Sci 2020; 11:8005-8012. [PMID: 34094169 PMCID: PMC8163233 DOI: 10.1039/d0sc02958k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Controlling the direction of molecular-scale pores enables the accommodation of guest molecular-scale species with alignment in the desired direction, allowing for the development of high-performance mechanical, thermal, electronic, photonic and biomedical organic devices (host-guest approach). Regularly ordered 1D nanochannels of metal-organic frameworks (MOFs) have been demonstrated as superior hosts for aligning functional molecules and polymers. However, controlling the orientation of MOF films with 1D nanochannels at commercially relevant scales remains a significant challenge. Here, we report the fabrication of macroscopically oriented films of Cu-based pillar-layered MOFs having regularly ordered 1D nanochannels. The direction of 1D nanochannels is controllable by optimizing the crystal growth process; 1D nanochannels align either perpendicular or parallel to substrates, offering molecular-scale pore arrays for a macroscopic alignment of functional guest molecules in the desired direction. Due to the fundamental interest and widespread technological importance of controlling the alignment of functional molecules and polymers in a particular direction, orientation-controllable MOF films will open up the possibility of realising the potential of MOFs in advanced technologies.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Miharu Nakanishi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Ken Ikigaki
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Yasuaki Tokudome
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 Graz 8010 Austria
| | - Christian J Doonan
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
8
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
9
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BVKJ, Wuttke S. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev 2020; 49:3348-3422. [DOI: 10.1039/c9cs00871c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We give a comprehensive overview of how the morphology control is an effective and versatile way to control the physicochemical properties of metal oxides that can be transferred to metal–organic frameworks and porous carbon materials.
Collapse
Affiliation(s)
- Jongkook Hwang
- Inorganic Chemistry and Catalysis
- Utrecht University
- Utrecht
- The Netherlands
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Ralph Freund
- Chair of Solid State and Materials Chemistry
- Institute of Physics
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Joanna Goscianska
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | | | - Stefan Wuttke
- BCMaterials
- Basque Center for Materials
- UPV/EHU Science Park
- 48940 Leioa
- Spain
| |
Collapse
|
11
|
Sun F, Li Q, Xue H, Pang H. Pristine Transition‐Metal‐Based Metal‐Organic Frameworks for Electrocatalysis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801520] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fancheng Sun
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
12
|
Müller K, Singh Malhi J, Wohlgemuth J, Fischer RA, Wöll C, Gliemann H, Heinke L. Water as a modulator in the synthesis of surface-mounted metal–organic framework films of type HKUST-1. Dalton Trans 2018; 47:16474-16479. [PMID: 30406780 DOI: 10.1039/c8dt03310b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By using water as modulator, the growth of thin nanoporous SURMOF films, prepared in a layer-by-layer fashion, can be improved.
Collapse
Affiliation(s)
- Kai Müller
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Jasleen Singh Malhi
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Jonas Wohlgemuth
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Roland A. Fischer
- Inorganic and Metal-Organic Chemistry
- Catalysis Research Centre
- Technical University Munich
- D-85748 Garching
- Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|