Li M, Li Z, Fu G, Tang Y. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021;
17:e2007179. [PMID:
33709573 DOI:
10.1002/smll.202007179]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.
Collapse