Controlled preparation of MoS
2/PbBiO
2I hybrid microspheres with enhanced visible-light photocatalytic behaviour.
J Colloid Interface Sci 2018;
517:278-287. [PMID:
29438870 DOI:
10.1016/j.jcis.2018.01.096]
[Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/09/2023]
Abstract
Novel MoS2/PbBiO2I hybrid microspheres were controllably synthesized via the ionic liquid 1-hexyl-3-methylimidazolium iodide ([Hmim]I) assisted solvothermal method. The morphologies, structures, optical and electronic properties of the materials were explored by XRD, XPS, SEM, TEM, DRS, EIS and photocurrent analysis. The photocatalytic activity of MoS2/PbBiO2I was evaluated by the degradation of rhodamine B (RhB), antibiotic agent ciprofloxacin (CIP) and bisphenol A (BPA) under visible light irradiation. The photodegradation results showed that the activity of MoS2/PbBiO2I was higher than that of pure PbBiO2I because of suitable band alignment, a larger specific surface area, an enhanced light absorption region, and stronger photocurrent intensity arising from the interface interaction between MoS2 and PbBiO2I. The 1.0 wt% MoS2/PbBiO2I showed the best photocatalytic performance. Electron spin resonance (ESR) experiments and free radical trapping experiments showed that the superoxide radicals (O2-) and holes (h+) were determined to be the main active species for the photocatalysis process. A possible mechanism was presented based on the detection and analysis results.
Collapse