1
|
Oh YH, Lee SY, Kong X, Oh HB, Lee S. Thermodynamic Reversal and Structural Correlation of 24-Crown-8/Protonated Tryptophan and 24-Crown 8/Protonated Serine Noncovalent Complexes in the Gas Phase vs in Solution: Quantum Chemical Analysis. ACS OMEGA 2024; 9:23793-23801. [PMID: 38854571 PMCID: PMC11154897 DOI: 10.1021/acsomega.4c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
We investigate the structures of 24-crown-8/H+/l-tryptophan (CR/TrpH+) and 24-crown-8/H+/l-serine (CR/SerH+) noncovalent host-guest complex both in the gas phase and in an aqueous solution by quantum chemical methods. The Gibbs free energies of the complex in the two phases are calculated to determine the thermodynamically most favorable conformer in each phase. Our predictions indicate that both the carboxyl and the ammonium in CR/TrpH+ and the ammonium in the CR/SerH+ complexes in the lowest Gibbs free energy configurations form hydrogen bonds (H-bonds) with the CR host in the gas phase, while the conformer with the "naked" (devoid of H-bond with the CR host) -CO2H (and/or -OH) is much less favorable (Gibbs free energy higher by >3.6 kcal/mol). In the solution phase, however, a "thermodynamic reversal" occurs, making the higher Gibbs free energy gas-phase CR/TrpH+ and CR/SerH+ conformers thermodynamically more favorable under the influence of solvent molecules. Consequently, the global minimum Gibbs free energy structure in solution is structurally correlated with the thermodynamically much less gas-phase conformer. Discussions are provided concerning the possibility of elucidating host-guest-solvent interactions in solution from the gas-phase host-guest configurations in molecular detail.
Collapse
Affiliation(s)
- Young-Ho Oh
- Department
of Chemistry, Konkuk University, Seoul 05029, Republic of Korea
- Department
of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea
| | - So Yeon Lee
- Department
of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Xianglei Kong
- State
Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center
for New Organic Matter, and Tianjin Key Laboratory of Biosensing and
Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han Bin Oh
- Department
of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Sungyul Lee
- Department
of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
2
|
Schmahl S, Horn F, Jin J, Westphal H, Belder D, Asmis KR. Online-Monitoring of the Enantiomeric Ratio in Microfluidic Chip Reactors Using Chiral Selector Ion Vibrational Spectroscopy. Chemphyschem 2024; 25:e202300975. [PMID: 38418402 DOI: 10.1002/cphc.202300975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
A novel experimental approach for the rapid online monitoring of the enantiomeric ratio of chiral analytes in solution is presented. The charged analyte is transferred to the gas phase by electrospray. Diastereomeric complexes are formed with a volatile chiral selector in a buffer-gas-filled ion guide held at room temperature, mass-selected, and subsequently spectrally differentiated by cryogenic ion trap vibrational spectroscopy. Based on the spectra of the pure complexes in a small diastereomer-specific spectral range, the composition of diastereomeric mixtures is characterized using the cosine similarity score, from which the enantiomeric ratio in the solution is determined. The method is demonstrated for acidified alanine solutions and using three different chiral selectors (2-butanol, 1-phenylethanol, 1-amino-2-propanol). Among these, 2-butanol is the best choice as a selector for protonated alanine, also because the formation ratio of the corresponding diastereomeric complexes is found to be independent of the nature of the enantiomer. Subsequently, a microfluidic chip is implemented to mix enantiomerically pure alanine solutions continuously and determine the enantiomeric ratio online with minimal sample consumption within one minute and with competitive accuracy.
Collapse
Affiliation(s)
- Sonja Schmahl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Francine Horn
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Hannes Westphal
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Dvores MP, Çarçabal P, Gerber RB. Selective reactivity of glycosyl cation stereoisomers: the role of intramolecular hydrogen bonding. Phys Chem Chem Phys 2023; 25:26737-26747. [PMID: 37779496 DOI: 10.1039/d3cp03326k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The impact of the stereochemistry of the glycosyl cation species upon its dynamic properties is examined together with their vibrational spectra in order to gain insight into the effects of configurational isomerism on conformer dynamics and proton mobility. Ab initio molecular dynamics (AIMD) simulations and infrared multiple photon dissociation (IRMPD) spectroscopy explore the conformational and reactive dynamics of two pairs of glycosyl cation isomers: (1) protonated α- and β- anomers of methyl-D-galactopyranoside and (2) the oxocarbenium ions of the D-aldohexose C2 epimers galactose and talose. Analysis of these simulations together with experimental spectroscopy, interpreted by anharmonic calculations, points to the key role played by the intramolecular hydrogen bonds which are present in a unique pattern and extent in each isomer. We find that the reactivity of galactoside stereoisomers toward acid-catalyzed nucleophilic substitution, as gauged by the ability to form free oxocarbenium ions, differs markedly in a way that agrees with experimental measurements in the condensed phase. Other properties such as conformer stability and vibrational transitions were also found to reflect the characteristic hydrogen bonding interactions present in each isomer. In both systems, the stereochemistry is shown to determine the strength of intramolecular hydrogen bonding as well as between which substituents proton transfer is possible. We expect that the critical impact of non-covalent interactions on stereoisomer selectivity may be a widely found phenomenon whose effects should be further investigated.
Collapse
Affiliation(s)
- M P Dvores
- Fritz Haber Centre for Molecular Dynamics, The Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel.
| | - P Çarçabal
- Insitut des Sciences Moléculaires d'Orsay, ISMO, Univ Paris-Sud, CNRS, bat 210, Univ Paris-Sud, 91405 Orsay Cedex, France
| | - R B Gerber
- Fritz Haber Centre for Molecular Dynamics, The Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel.
- Department of Chemistry, University of California Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Kou M, Oh YH, Lee S, Kong X. Distinguishing gas phase lactose and lactulose complexed with sodiated L-arginine by IRMPD spectroscopy and DFT calculations. Phys Chem Chem Phys 2023; 25:25116-25121. [PMID: 37676638 DOI: 10.1039/d3cp03406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We present the origin of the observed differentiation of lactose and lactulose achieved by complexation with sodiated L-arginine (ArgNa+). We find that the infrared multiphoton dissociation (IRMPD) bands in 3600-3650 and >3650 cm-1 regimes for gas phase lactose and lactulose, respectively, vanish when forming host-guest complexes with ArgNa+. We interpret these differences in the IRMPD spectra by scrutinizing the interactions between the functional groups (guanidium, -CO2-Na+) in ArgNa+ and -OHs in lactose/lactulose. Our calculated structures and infrared spectra of lactose/ArgNa+ and lactulose/ArgNa+ host-guest pairs indicate that the functional groups interact with the low- and high-frequency -OH stretch modes of lactose and lactulose, respectively, in the 3600-3720 cm-1 window.
Collapse
Affiliation(s)
- Min Kou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Young-Ho Oh
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea.
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea.
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Shi Y, Zhou M, Kou M, Zhang K, Zhang X, Kong X. Simultaneous quantitative chiral analysis of four isomers by ultraviolet photodissociation mass spectrometry and artificial neural network. Front Chem 2023; 11:1129671. [PMID: 36970407 PMCID: PMC10034024 DOI: 10.3389/fchem.2023.1129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Although mass spectrometry (MS) has its unique advantages in speed, specificity and sensitivity, its application in quantitative chiral analysis aimed to determine the proportions of multiple chiral isomers is still a challenge. Herein, we present an artificial neural network (ANN) based approach for quantitatively analyzing multiple chiral isomers from their ultraviolet photodissociation mass spectra. Tripeptide of GYG and iodo-L-tyrosine have been applied as chiral references to fulfill the relative quantitative analysis of four chiral isomers of two dipeptides of L/DHisL/DAla and L/DAspL/DPhe, respectively. The results show that the network can be well-trained with limited sets, and have a good performance in testing sets. This study shows the potential of the new method in rapid quantitative chiral analysis aimed at practical applications, with much room for improvement in the near future, including selecting better chiral references and improving machine learning methods.
Collapse
Affiliation(s)
- Yingying Shi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Ming Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Min Kou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Kailin Zhang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, China
| | - Xianyi Zhang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Xianglei Kong,
| |
Collapse
|
6
|
Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Di Sabato A, D’Acunzo F, Filippini D, Vetica F, Brasiello A, Corinti D, Bodo E, Michenzi C, Panzetta E, Gentili P. Unusually Chemoselective Photocyclization of 2-(Hydroxyimino)aldehydes to Cyclobutanol Oximes: Synthetic, Stereochemical, and Mechanistic Aspects. J Org Chem 2022; 87:13803-13818. [PMID: 36198009 PMCID: PMC9639046 DOI: 10.1021/acs.joc.2c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocyclization of carbonyl compounds (known as the Norrish-Yang reaction) to yield cyclobutanols is, in general, accompanied by fragmentation reactions. The latter are predominant in the case of aldehydes so that secondary cyclobutanols are not considered accessible via the straightforward Norrish-Yang reaction. A noteworthy exception has been reported in our laboratory, where cyclobutanols bearing a secondary alcohol function were observed upon UV light irradiation of 2-(hydroxyimino)aldehydes (HIAs). This reaction is here investigated in detail by combining synthesis, spectroscopic data, molecular dynamics, and DFT calculations. The synthetic methodology is generally applicable to a series of HIAs, affording the corresponding cyclobutanol oximes (CBOs) chemoselectively (i.e., without sizable fragmentation side-reactions), diastereoselectively (up to >99:1), and in good to excellent yields (up to 95%). CBO oxime ether derivatives can be purified and diastereomers isolated by standard column chromatography. The mechanistic and stereochemical picture of this photocyclization reaction, as well as of the postcyclization E/Z isomerization of the oxime double bond is completed.
Collapse
Affiliation(s)
- Antonio Di Sabato
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,Institute
of Biological Systems (ISB), Sezione Meccanismi di Reazione, Italian
National Research Council (CNR), c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca D’Acunzo
- Institute
of Biological Systems (ISB), Sezione Meccanismi di Reazione, Italian
National Research Council (CNR), c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dario Filippini
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Vetica
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,
| | - Antonio Brasiello
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Davide Corinti
- Department
of Chemistry and Technology of Drugs, Sapienza
University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Bodo
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Michenzi
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Panzetta
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Gentili
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,Institute
of Biological Systems (ISB), Sezione Meccanismi di Reazione, Italian
National Research Council (CNR), c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,
| |
Collapse
|
8
|
Current Status of Quantum Chemical Studies of Cyclodextrin Host-Guest Complexes. Molecules 2022; 27:molecules27123874. [PMID: 35744998 PMCID: PMC9229288 DOI: 10.3390/molecules27123874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
This article aims to review the application of various quantum chemical methods (semi-empirical, density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2)) in the studies of cyclodextrin host-guest complexes. The details of applied approaches such as functionals, basis sets, dispersion corrections or solvent treatment methods are analyzed, pointing to the best possible options for such theoretical studies. Apart from reviewing the ways that the computations are usually performed, the reasons for such studies are presented and discussed. The successful applications of theoretical calculations are not limited to the determination of stable conformations but also include the prediction of thermodynamic properties as well as UV-Vis, IR, and NMR spectra. It has been shown that quantum chemical calculations, when applied to the studies of CD complexes, can provide results unobtainable by any other methods, both experimental and computational.
Collapse
|
9
|
Unveiling host-guest-solvent interactions in solution by identifying highly unstable host-guest configurations in thermal non-equilibrium gas phase. Sci Rep 2022; 12:8169. [PMID: 35581255 PMCID: PMC9114120 DOI: 10.1038/s41598-022-12226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
We propose a novel scheme of examining the host-guest-solvent interactions in solution from their gas phase structures. By adopting the permethylated β-cyclodextrin (perm β-CD)-protonated L-Lysine non-covalent complex as a prototypical system, we present the infrared multiple photon dissociation (IRMPD) spectrum of the gas phase complex produced by electrospray ionization technique. In order to elucidate the structure of perm β-CD)/LysH+ complex in the gas phase, we carry out quantum chemical calculations to assign the two strong peaks at 3,340 and 3,560 cm-1 in the IRMPD spectrum, finding that the carboxyl forms loose hydrogen bonding with the perm β-CD, whereas the ammonium group of L-Lysine is away from the perm β-CD unit. By simulating the structures of perm β-CD/H+/L-Lysine complex in solution using the supramolecule/continuum model, we find that the extremely unstable gas phase structure corresponds to the most stable conformer in solution.
Collapse
|
10
|
Zhou M, Jiao L, Xu S, Xu Y, Du M, Zhang X, Kong X. A novel method for photon unfolding spectroscopy of protein ions in the gas phase. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:043003. [PMID: 35489914 DOI: 10.1063/5.0080040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new experimental method for photon unfolding spectroscopy of protein ions based on a Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer was developed. The method of short-time Fourier transform has been applied here to obtain decay curves of target ions trapped in the cell of the FT ICR mass spectrometer. Based on the decay constants, the collision cross sections (CCSs) of target ions were calculated using the energetic hard-sphere model. By combining a tunable laser to the FT ICR mass spectrometer, the changes of CCSs of the target ions were recorded as a function of the wavelengths; thus, the photon isomerization spectrum was obtained. As one example, the photon isomerization spectrum of [Cyt c + 13H]13+ was recorded as the decay constants relative to the applied wavelengths of the laser in the 410-480 nm range. The spectrum shows a maximum at 426 nm, where an unfolded structure induced by a 4 s irradiation can be deduced. The strong peak at 426 nm was also observed for another ion of [Cyt c + 15H]15+, although some difference at 410 nm between the two spectra was found at the same time. This novel method can be expanded to ultraviolet or infrared region, making the experimental study of wavelength-dependent photon-induced structural variation of a variety of organic or biological molecules possible.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, China
| | - Luyang Jiao
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, China
| | - Shiyin Xu
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, China
| | - Yicheng Xu
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengying Du
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianyi Zhang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China
| | - Xianglei Kong
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Hirata K, Mori Y, Ishiuchi SI, Fujii M, Zehnacker A. Chiral discrimination between tyrosine and β-cyclodextrin revealed by cryogenic ion trap infrared spectroscopy. Phys Chem Chem Phys 2020; 22:24887-24894. [PMID: 32914820 DOI: 10.1039/d0cp02968h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complexes of permethylated β-cyclodextrin (β-MCD) with the two enantiomers of protonated tyrosine (l- and d-TyrH+) are studied by cryogenic ion trap infrared photo-dissociation spectroscopy. The vibrational spectra in the OH/NH stretch and fingerprint regions are assigned based on density functional theory calculations. The spectrum of both l- and d-TyrH+ complexes contains features characteristic of a first structure with ammonium and acid groups of the amino acid simultaneously interacting with the β-MCD, the phenolic OH remaining free. A second structure involving additional interaction between the phenolic OH and the β-MCD is observed only for the complex with d-TyrH+. The larger abundance of the d-TyrH+ complex in the mass spectrum is tentatively explained in terms of (1) better insertion of d-TyrH+ within the cavity with the hydrophobic aromatic moiety less exposed to hydrophilic solvent molecules and (2) a stiff structure involving three interaction points, namely the ammonium, the phenolic OH and the carboxylic acid OH, which is not possible for the complex with l-TyrH+. The recognition process does not occur through size effects that induce complementarity to the host molecule but specific interactions. These results provide a comprehensive understanding of how the cyclodextrin recognises a chiral biomolecule.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | | | | | | | | |
Collapse
|
12
|
Application of Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy in Chiral Analysis. Molecules 2020; 25:molecules25215152. [PMID: 33167464 PMCID: PMC7663940 DOI: 10.3390/molecules25215152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, methods based on photodissociation in the gas phase have become powerful means in the field of chiral analysis. Among them, infrared multiple photon dissociation (IRMPD) spectroscopy is a very attractive one, since it can provide valuable spectral and structural information of chiral complexes in addition to chiral discrimination. Experimentally, the method can be fulfilled by the isolation of target diastereomeric ions in an ion trap followed by the irradiation of a tunable IR laser. Chiral analysis is performed by comparing the difference existing in the spectra of enantiomers. Combined with theoretical calculations, their structures can be further understood on the molecular scale. By now, lots of chiral molecules, including amino acids and peptides, have been studied with the method combined with theoretical calculations. This review summarizes the relative experimental results obtained, and discusses the limitation and prospects of the method.
Collapse
|
13
|
Sun L, Huang F, Liu W, Lin L, Hong Y, Kong X. Chiral differentiation of l- and d-penicillamine by β-cyclodextrin: Investigated by IRMPD spectroscopy and theoretical simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118653. [PMID: 32623304 DOI: 10.1016/j.saa.2020.118653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The chirality of penicillamine (Peni) results in different clinic applications. Host-guest complex based drug delivery system that differentiates the two enantiomers and provides delayed release is of significance in medication. We hereby used β-CD to encapsulate d- and l-Peni. IRMPD spectra show different characteristic vibrations to distinguish the two enantiomers. Besides common peaks found at 3000-3100 cm-1 and 3520 cm-1, featured peaks are found around 2900 cm-1 and 3400 cm-1. It is found that the featured vibrations of [β-CD + l-Peni + H]+ are more red-shifted than those of [β-CD + d-Peni + H]+. Through DFT calculations on the complex configurations sampled from molecular dynamics simulations, d-Peni is found embedded inside β-CD with a lower free energy of 11.5 kJ mol-1 in the lowest configuration than that of the lowest [β-CD + l-Peni + H]+ configuration, in which l-Peni is found lying upon the β-CD. The featured vibrational peaks are attributed to the specific NH⋯O, OH⋯O intermolecular hydrogen bonds. The red-shifted characteristic peaks of [β-CD + l-Peni + H]+ in IRMPD spectra owe to the stronger NH⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Lu Sun
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi, China
| | - Fan Huang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Weiwei Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Lie Lin
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Yin Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 30007, China.
| |
Collapse
|
14
|
Ren J, Zhang XY, Kong XL. Structure of protonated heterodimer of proline and phenylalanine: Revealed by infrared multiphoton dissociation spectroscopy and theoretical calculations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Juan Ren
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xian-yi Zhang
- School of Physics and Electronic Information, Anhui Normal University, Anhui Normal University, Wuhu 241000, China
| | - Xiang-lei Kong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Alvira E. Molecular Simulation of the Separation of Some Amino Acid Enantiomers by β-Cyclodextrin in Gas-Phase. Front Chem 2020; 8:823. [PMID: 33102440 PMCID: PMC7505776 DOI: 10.3389/fchem.2020.00823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022] Open
Abstract
The complexes formed by β-cyclodextrin and some amino acids (alanine, valine, leucine, and isoleucine) in vacuo are studied by molecular mechanics and dynamics simulations. These methods have been improved with respect to our previous studies with amino acids, regarding the determination of molecular structures or initial enantiomer dispositions in the molecular dynamics trajectories. The greatest contribution to the interaction energy is from the van der Waals term, although the discrimination between enantiomers is due mainly to the electrostatic contribution. The lowest energy structures of the complexes obtained from molecular mechanics are inclusion complexes in which the carboxylic end of amino acids is pointing toward the narrow (D-) or wide rim (L-) of β-cyclodextrin. The position probability density provided by molecular dynamics also confirms inclusion complex formation, because the guests spend most time inside the cavity of β-cyclodextrin along its axis, with the carboxylic end pointing toward the narrow rim. The L-amino acids are the first eluted enantiomers in all cases and chiral discrimination increases with the size of guests, except leucine, which has the lowest capacity to discriminate. During the simulation, Ala and Val remain in weakly enantioselective regions, while Leu and Ile stay in zones with great chiral selectivity.
Collapse
Affiliation(s)
- Elena Alvira
- Departamento de Física, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
16
|
Lee JU, Lee SS, Lee S, Oh HB. Noncovalent Complexes of Cyclodextrin with Small Organic Molecules: Applications and Insights into Host-Guest Interactions in the Gas Phase and Condensed Phase. Molecules 2020; 25:molecules25184048. [PMID: 32899713 PMCID: PMC7571109 DOI: 10.3390/molecules25184048] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) have drawn a lot of attention from the scientific communities as a model system for host–guest chemistry and also due to its variety of applications in the pharmaceutical, cosmetic, food, textile, separation science, and essential oil industries. The formation of the inclusion complexes enables these applications in the condensed phases, which have been confirmed by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and other methodologies. The advent of soft ionization techniques that can transfer the solution-phase noncovalent complexes to the gas phase has allowed for extensive examination of these complexes and provides valuable insight into the principles governing the formation of gaseous noncovalent complexes. As for the CDs’ host–guest chemistry in the gas phase, there has been a controversial issue as to whether noncovalent complexes are inclusion conformers reflecting the solution-phase structure of the complex or not. In this review, the basic principles governing CD’s host–guest complex formation will be described. Applications and structures of CDs in the condensed phases will also be presented. More importantly, the experimental and theoretical evidence supporting the two opposing views for the CD–guest structures in the gas phase will be intensively reviewed. These include data obtained via mass spectrometry, ion mobility measurements, infrared multiphoton dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jae-ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Sung-Sik Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| |
Collapse
|
17
|
|
18
|
Shi Y, Zhou M, Zhang K, Ma L, Kong X. Chiral Differentiation of Non-Covalent Diastereomers Based on Multichannel Dissociation Induced by 213-nm Ultraviolet Photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2297-2305. [PMID: 31410655 DOI: 10.1007/s13361-019-02302-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Here we present the implementation of 213-nm ultraviolet photodissociation (UVPD) in a FT-ICR mass spectrometer for chiral differentiation in the gas phase. The L/D amino acid-substituted serine octamer ions were selected as examples of diastereoisomers for chiral analysis. Several kinds of fragment ions were observed in these experiments, including fragment ions that are similar to the ones observed in corresponding collision-activated dissociation (CAD) experiments, fragment ions generated with different protonation sites by only destroying non-covalent bonds, and unique non-covalent cluster radical ions. The latter two kinds of fragment ions are found to be more sensitive to the chirality of the substituted units. Further experiments suggest that the formation of radical ions is mainly affected by chromophores on side chains of the substituted units and micro surroundings of the characterized non-covalent diastereoisomers. A comparing experiment performed by only changing the wavelength of UV laser to 266 nm shows that the 213-nm UV laser has the priority in the diversity of fragmentation pathways and potential of further application in chiral differentiation experiments.
Collapse
Affiliation(s)
- Yingying Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Min Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Department of Physics, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Kailin Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifu Ma
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xianglei Kong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Lee SS, Lee JU, Oh JH, Park S, Hong Y, Min BK, Lee HHL, Kim HI, Kong X, Lee S, Oh HB. Chiral differentiation of d- and l-isoleucine using permethylated β-cyclodextrin: infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations. Phys Chem Chem Phys 2018; 20:30428-30436. [PMID: 30499999 DOI: 10.1039/c8cp05617j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chiral differentiation of protonated isoleucine (Ile) using permethylated β-cyclodextrin (perCD) in the gas-phase was studied using infrared multiple photon dissociation (IRMPD) spectroscopy, ion-mobility, and density functional theory (DFT) calculations. The gaseous protonated non-covalent complexes of perCD and d-Ile or l-Ile produced by electrospray ionization were interrogated by laser pulses in the wavenumber region of 2650 to 3800 cm-1. The IRMPD spectra showed remarkably different IR spectral features for the d-Ile or l-Ile and perCD non-covalent complexes. However, drift-tube ion-mobility experiments provided only a small difference in their collision cross-sections, and thus a limited separation of the d- and l-Ile complexes. DFT calculations revealed that the chiral distinction of the d- and l-complexes by IRMPD spectroscopy resulted from local interactions of the protonated Ile with perCD. Furthermore, the theoretical results showed that the IR absorption spectra of higher energy conformers (by ∼13.7 kcal mol-1) matched best with the experimentally observed IRMPD spectra. These conformers are speculated to be formed from kinetic-trapping of the solution-phase conformers. This study demonstrated that IRMPD spectroscopy provides an excellent platform for differentiating the subtle chiral difference of a small amino acid in a cyclodextrin-complexation environment; however, drift-tube ion-mobility did not have sufficient resolution to distinguish the chiral difference.
Collapse
Affiliation(s)
- Sung-Sik Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ma L, Ren J, Feng R, Zhang K, Kong X. Structural characterizations of protonated homodimers of amino acids: Revealed by infrared multiple photon dissociation (IRMPD) spectroscopy and theoretical calculations. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Carr PJJ, Lecours MJ, Burt MJ, Marta RA, Steinmetz V, Fillion E, Hopkins WS. Mode-Selective Laser Control of Palladium Catalyst Decomposition. J Phys Chem Lett 2018; 9:157-162. [PMID: 29244504 DOI: 10.1021/acs.jpclett.7b03030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is generally assumed that molecules behave ergodically during chemical reactions, that is, reactivities depend only on the total energy content and not on the initial state of the molecule. While there are a few examples of nonergodic behavior in small (usually electronically excited) species, to date there have been no reports of such behavior in larger covalently bound species composed of several tens of atoms. Here, we demonstrate vibrational mode-selective behavior in a series of palladium catalysts. When we excite solvent-tagged gas-phase Pd catalysts with an infrared laser that is tuned to be resonant with specific molecular vibrations, depending on which vibration we excite, we can select different reaction pathways. We also demonstrate that this behavior can be "turned off" via chemical substitution.
Collapse
Affiliation(s)
- Patrick J J Carr
- Department of Chemistry, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Michael J Lecours
- Department of Chemistry, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Michael J Burt
- Department of Chemistry, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Rick A Marta
- Department of Chemistry, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Vincent Steinmetz
- Laboratoire Chemie Physique, CLIO/LCP , Bâtiment 201, Campus Universitaire d'Orsay, Orsay 91405, France
| | - Eric Fillion
- Department of Chemistry, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
22
|
Filippi A, Fraschetti C, Guarcini L, Zazza C, Ema T, Speranza M. Spectroscopic Discrimination of Diastereomeric Complexes Involving an Axially Chiral Receptor. Chemphyschem 2017; 18:2475-2481. [DOI: 10.1002/cphc.201700732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Antonello Filippi
- Università di Roma “La Sapienza”; Dipartimento di Chimica e Tecnologie del Farmaco; P.le A. Moro, 5 Roma 00185 Italy
| | - Caterina Fraschetti
- Università di Roma “La Sapienza”; Dipartimento di Chimica e Tecnologie del Farmaco; P.le A. Moro, 5 Roma 00185 Italy
| | - Laura Guarcini
- Università di Roma “La Sapienza”; Dipartimento di Chimica e Tecnologie del Farmaco; P.le A. Moro, 5 Roma 00185 Italy
| | - Costantino Zazza
- Università di Roma “La Sapienza”; Dipartimento di Chimica e Tecnologie del Farmaco; P.le A. Moro, 5 Roma 00185 Italy
| | - Tadashi Ema
- Graduate School of Natural Sciences and Technology; Okayama University; Tsushima Okayama 700-8530 Japan
| | - Maurizio Speranza
- Università di Roma “La Sapienza”; Dipartimento di Chimica e Tecnologie del Farmaco; P.le A. Moro, 5 Roma 00185 Italy
| |
Collapse
|