1
|
Lang H, Sato T. Time-dependent orbital-optimized coupled-cluster methods families for fermion-mixtures dynamics. J Chem Phys 2024; 161:114114. [PMID: 39291685 DOI: 10.1063/5.0227236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Five time-dependent orbital optimized coupled-cluster methods, of which four can converge to the time-dependent complete active space self-consistent-field method, are presented for fermion-mixtures with arbitrary fermion kinds and numbers. Truncation schemes maintaining the intragroup orbital rotation invariance, as well as equations of motion of coupled-cluster (CC) amplitudes and orbitals, are derived. Present methods are compact CC-parameterization alternatives to the time-dependent multiconfiguration self-consistent-field method for systems consisting of arbitrarily different kinds and numbers of interacting fermions. Theoretical analysis of applications of present methods to various chemical systems is reported.
Collapse
Affiliation(s)
- Haifeng Lang
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Sato
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Li Y, He F, Sato T, Ishikawa KL. Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules. J Phys Chem A 2024; 128:1523-1532. [PMID: 38373288 DOI: 10.1021/acs.jpca.3c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron-electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Takeshi Sato
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi L Ishikawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Pathak H, Sato T, Ishikawa KL. Time-dependent optimized coupled-cluster method for multielectron dynamics. III. A second-order many-body perturbation approximation. J Chem Phys 2020; 153:034110. [DOI: 10.1063/5.0008789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Himadri Pathak
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Sato
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi L. Ishikawa
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Rowan K, Schatzki L, Zaklama T, Suzuki Y, Watanabe K, Varga K. Simulation of a hydrogen atom in a laser field using the time-dependent variational principle. Phys Rev E 2020; 101:023313. [PMID: 32168589 DOI: 10.1103/physreve.101.023313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The time-dependent variational principle is used to optimize the linear and nonlinear parameters of Gaussian basis functions to solve the time-dependent Schrödinger equation in one and three dimensions for a one-body soft Coulomb potential in a laser field. The accuracy is tested comparing the solution to finite difference grid calculations using several examples. The approach is not limited to one particle systems and the example presented for two electrons demonstrates the potential to tackle larger systems using correlated basis functions.
Collapse
Affiliation(s)
- Keefer Rowan
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Louis Schatzki
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Timothy Zaklama
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Yasumitsu Suzuki
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Kazuyuki Watanabe
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Kálmán Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
5
|
Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Ultrafast Intense Laser Science. SPRINGER SERIES IN CHEMICAL PHYSICS 2018. [DOI: 10.1007/978-3-030-03786-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|