1
|
Michon MA, Chmielniak P, Weber PM, Rose-Petruck C. Two-photon chemistry of tetrahydrofuran in clathrate hydrates. Phys Chem Chem Phys 2024; 26:2568-2579. [PMID: 38170862 DOI: 10.1039/d3cp02607h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
High-lying electronic states hold the potential for new and unusual photochemical reactions. However, for conventional single-photon excitation in the condensed phase, reaching these states is often not possible because the vacuum-ultraviolet (VUV) light required is competitively absorbed by the surrounding matrix rather than the molecule of interest. Here, this hurdle is overcome by leveraging nonresonant two-photon absorption (2PA) at 265 nm to achieve preferential photolysis of tetrahydrofuran (THF) trapped within a clathrate hydrate network at 77 K. Electron spin resonance (ESR) spectroscopy enables direct observation and identification of otherwise short-lived organic radicals stabilized by the clathrate cages, providing clues into the rapid dynamics that immediately follow photoexcitation. 2PA induces extensive fragmentation of enclathrated THF yielding 1-alkyl, acyl, allyl and methyl radicals-a stark departure from the reactive motifs commonly reported in γ-irradiated hydrates. We speculate on the undetected transient dynamics and explore the potential role of trapped electrons generated from water and THF. This demonstration of nonresonant two-photon chemistry presents an alternative approach to targeted condensed phase photochemistry in the VUV energy range.
Collapse
Affiliation(s)
- Michael A Michon
- Department of Chemistry, Brown University, Providence, 02912, Rhode Island, USA.
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, 02912, Rhode Island, USA.
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, 02912, Rhode Island, USA.
| | | |
Collapse
|
2
|
Kumar S, Kilich T, Łabuda M, García G, Limão-Vieira P. Anionic states of C 6Cl 6 probed in electron transfer experiments. Phys Chem Chem Phys 2021; 24:366-374. [PMID: 34889910 DOI: 10.1039/d1cp04500h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This is the first comprehensive investigation on the anionic species formed during collisions of fast neutral potassium (K) atoms with neutral hexachlorobenzene (C6Cl6) molecules in the laboratory frame range from 10 up to 100 eV. In such ion-pair formation experiments we also report a novel K+ energy loss spectrum obtained in the forward scattering giving evidence of the most accessible electronic states. The vertical electron affinity of (-3.76 ± 0.20) eV has been obtained and assigned to a purely repulsive transition from the C6Cl6 ground state to a state of the temporary negative ion yielding Cl- formation. These experimental findings are also supported by state-of-the art theoretical calculations on the electronic structure of C6Cl6 in the presence of a potassium atom and are used for analysing the lowest unoccupied molecular orbitals participating in the collision process. From the time-of-flight mass spectra recorded in the wide collision energy range, more than 80% of the total anion yield is due to the undissociated parent anion C6Cl6-, C6Cl5- and Cl- formation. Other fragment anions such as C6Cl4-, C3Cl2-, C2Cl- and Cl2- that undergo complex internal reactions with the temporary negative ion formed after electron transfer account for less than 20% of the total yield. The joint experimental and theoretical methodologies employed in these electron transfer studies provide the most comprehensive and unique assignments of the hexachlorobenzene anionic species and the role of C6Cl6 electronic states in collision induced dissociation to date.
Collapse
Affiliation(s)
- S Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - T Kilich
- Department of Theoretical Physics and Quantum Information, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - M Łabuda
- Department of Theoretical Physics and Quantum Information, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.,BioTechMed, Gdańsk University of Technology, Gdańsk, Poland
| | - G García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - P Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations. Int J Mol Sci 2019; 20:ijms20236022. [PMID: 31795357 PMCID: PMC6929036 DOI: 10.3390/ijms20236022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023] Open
Abstract
The present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the ab initio calculations. The measurements of the fragmentation spectra of furan were performed at the different kinetic energies of both cations. In consequence, several excited products were identified by their luminescence. Among them, the emission of helium atoms excited to the 1s4d1D2, 3D1,2,3 states was recorded. The structure of the furan molecule lacks an He atom. Therefore, observation of its emission lines is spectroscopic evidence of an impact reaction occurring via relocation of the electronic charge between interacting entities. Moreover, the recorded spectra revealed significant variations of relative band intensities of the products along with the change of the projectile charge and its velocity. In particular, at lower velocities of He+, the relative cross-sections of dissociation products have prominent resonance-like maxima. In order to elucidate the experimental results, the calculations have been performed by using a high level of quantum chemistry methods. The calculations showed that in both impact systems two collisional processes preceded fragmentation. The first one is an electron transfer from furan molecules to cations that leads to the neutralization and further excitation of the cations. The second mechanism starts from the formation of the He−C4H4O+/2+ temporary clusters before decomposition, and it is responsible for the appearance of the narrow resonances in the relative cross-section curves.
Collapse
|
4
|
The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids. Int J Mol Sci 2019; 20:ijms20225578. [PMID: 31717298 PMCID: PMC6888488 DOI: 10.3390/ijms20225578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in a crossed molecular beam set up using a potassium atom as an electron donor. The negative ions formed in the collision region were mass analysed with a reflectron time-of-flight mass spectrometer. In the unimolecular decomposition of the temporary negative ion, the two most relevant yields were assigned to BO- and BO2-. Moreover, the collision-induced reaction was shown to be selective, i.e., at energies below 100 eV, it mostly formed BO-, while at energies above 100 eV, it mostly formed BO2-. In order to further our knowledge on the complex internal reaction mechanisms underlying the influence of the hybridization state of the boron atom, cyclohexylboronic acid was also investigated in the same collision energy range, where the main dissociation channel yielded BO2-. The experimental results for phenyl boronic acid are supported by ab initio theoretical calculations of the lowest unoccupied molecular orbitals (LUMOs) accessed in the collision process.
Collapse
|
5
|
Wolff W, Rudek B, da Silva LA, Hilgers G, Montenegro EC, Homem MGP. Absolute ionization and dissociation cross sections of tetrahydrofuran: Fragmentation-ion production mechanisms. J Chem Phys 2019. [DOI: 10.1063/1.5115403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- W. Wolff
- Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - B. Rudek
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig, Germany
| | - L. A. da Silva
- Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - G. Hilgers
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig, Germany
| | - E. C. Montenegro
- Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - M. G. P. Homem
- Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
6
|
Erdmann E, Łabuda M, Aguirre NF, Díaz-Tendero S, Alcamí M. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations. J Phys Chem A 2018. [PMID: 29543456 DOI: 10.1021/acs.jpca.8b00881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a complete exploration of the different fragmentation mechanisms of furan (C4H4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breaking of one C-O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.
Collapse
Affiliation(s)
- Ewa Erdmann
- Faculty of Applied Physics and Mathematics , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Marta Łabuda
- Faculty of Applied Physics and Mathematics , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Néstor F Aguirre
- Theoretical Division, Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Manuel Alcamí
- Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia) , 28049 Madrid , Spain
| |
Collapse
|