1
|
Álvarez-García A, Molina LM, Garzón IL. O 2 activation by subnanometer Re-Pt clusters supported on TiO 2(110): exploring adsorption sites. Phys Chem Chem Phys 2024; 26:15902-15915. [PMID: 38775219 DOI: 10.1039/d4cp01118j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Activation of O2 by subnanometer metal clusters is a fundamental step in the reactivity and oxidation processes of single-cluster catalysts. In this work, we examine the adsorption and dissociation of O2 on RenPtm (n + m = 5) clusters supported on rutile TiO2(110) using DFT calculations. The adhesion energies of RenPtm clusters on the support are high, indicating significant stability of the supported clusters. Furthermore, the bimetallic Re-Pt clusters attach to the surface through the Re atoms. The oxygen molecule was adsorbed on three sites of the supported systems: the metal cluster, the surface, and the interface. At the metal cluster site, the O2 molecule binds strongly to RenPtm clusters, especially on the Re-rich clusters. O2 activation occurs by charge transfer from the metal atoms to the molecule. The dissociation of O2 on the RenPtm clusters is an exothermic process with low barriers. As a result, sub-nanometer Re-Pt clusters can be susceptible to oxidation. Similar results are obtained at the metal-support interface, where both the surface and cluster transfer charge to O2. To surface sites, molecular oxygen is adsorbed onto the Ti5c atoms with moderate adsorption energies. The polarons, which are produced by the interaction between the metal cluster and the surface, participate in the activation of the molecule. However, dissociating O2 in these sites is challenging due to the endothermic nature of the process and the high energy barriers involved. Our findings provide novel insights into the reactivity of supported clusters, specifically regarding the O2 activation by Re-Pt clusters on rutile TiO2(110).
Collapse
Affiliation(s)
- Andrés Álvarez-García
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.
| | - Luis M Molina
- Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.
| |
Collapse
|
2
|
Fabila Fabian JR, Romero Vazquez D, Paz-Borbón LO, Buendia F. Role of bimetallic Au-Ir subnanometer clusters mediating O2 adsorption and dissociation on anatase TiO2 (101). J Chem Phys 2022; 157:084309. [DOI: 10.1063/5.0100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comprehensive computational study on the oxygen molecule (O2) adsorption and activation on bimetallic Au-Ir subnanometer clusters supported on TiO2(101) up to 5 atoms in size - is performed. Our results indicate a strong cluster-oxide interaction for mono-metallic Ir clusters, with calculated adsorption energy (Eads ) values ranging from -3.11 up to -5.91 eV. Similar values are calculated for bimetallic Au-Ir clusters (-3.21 up to -5.69 eV). However, weaker Eads values are calculated for Au clusters (ranging from -0.66 up to -2.07 eV). As a general trend, we demonstrate that for supported Au-Ir clusters on TiO2(101), those Ir atoms preferentially occupy cluster-oxide interface positions while acting as anchor sites for the Au atoms. The overall geometric arrangements of the putative global minima configurations define O2 adsorption and dissociation, particularly involving the mono-metallic Au5, Ir5, as well as the bimetallic Au2Ir3 and Au3Ir2 supported clusters. Spontaneous O2 dissociation is observed on both Ir5 and on the Ir metallic part of Au3Ir2 and Au2Ir3 supported clusters. This is in sharp contrast with supported Au5, where a large activation energy is needed (1.90 eV). Interestingly, for Au5 we observe that molecular O2 adsorption is favorable at the cluster/oxide interface, followed by a smaller dissociation barrier (0.71 eV). From a single-cluster catalysis (SCC) point of view, our results have strong implications in the ongoing understanding of oxide supported bimetallic, while providing a useful first insight for the continuous in-silico design of novel sub-nanometer catalysts.
Collapse
|
3
|
Buendía F, Araiza DG, López-Rodríguez L, Paz-Borbón LO, Díaz G. Methanol interaction over Cu-Pt clusters supported on CeO2: Towards an understanding of adsorption sites. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Nair AS, Anoop A, Ahuja R, Pathak B. Relativistic Effects in Platinum Nanocluster Catalysis: A Statistical Ensemble-Based Analysis. J Phys Chem A 2022; 126:1345-1359. [PMID: 35188378 DOI: 10.1021/acs.jpca.1c09981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoclusters are materials of paramount catalytic importance. Among various unique properties featured by nanoclusters, a pronounced relativistic effect can be a decisive parameter in governing their catalytic activity. A concise study delineating the role of relativistic effects in nanocluster catalysis is carried by investigating the oxygen reduction reaction (ORR) activity of a Pt7 subnanometer cluster. Global optimization analysis shows the critical role of spin-orbit coupling (SOC) in regulating the relative stability between structural isomers of the cluster. An overall improved ORR adsorption energetics and differently scaled adsorption-induced structural changes are identified with SOC compared to a non-SOC scenario. Ab initio atomistic thermodynamics analysis predicted nearly identical phase diagrams with significant structural differences for high coverage oxygenated clusters under realistic conditions. Though inclusion of SOC does not bring about drastic changes in the overall catalytic activity of the cluster, it is having a crucial role in governing the rate-determining step, transition-state configuration, and energetics of elementary reaction pathways. Furthermore, a statistical ensemble-based approach illustrates the strong contribution of low-energy local minimum structural isomers to the total ORR activity, which is significantly scaled up along the activity improving direction within the SOC framework. The study provides critical insights toward the importance of relativistic effects in determining various catalytic activity relevant features of nanoclusters.
Collapse
Affiliation(s)
- Akhil S Nair
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala, 75120, Sweden.,Department of Physics, Indian Institute of Technology Ropar, Ropar, Punjab, 140001, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
5
|
Gálvez-González LE, Posada-Amarillas A, Paz-Borbón LO. Structure, Energetics, and Thermal Behavior of Bimetallic Re-Pt Clusters. J Phys Chem A 2021; 125:4294-4305. [PMID: 34008972 DOI: 10.1021/acs.jpca.0c11303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic Re-Pt is a widely used catalyst in petroleum reforming to obtain high-octane gasoline, but experimental and theoretical information of such systems at the subnanometer scale-namely, as cluster aggregates-is currently lacking. Thus, in this work, we performed a density functional theory-based global optimization study to determine the physicochemical properties of the most stable Re-Pt gas-phase clusters up to six atoms for all compositions. Our results indicate that in these putative global minima (GM) geometries, Re atoms tend to aggregate, while most Pt atoms remain separated from each other. This is even observed in Pt-rich clusters-an indication of the strength of the Re-Re and Re-Pt bonds over pure Pt-Pt ones-due to a strong, directional hybridization of the Re half-filled 5d and the nearly full Pt 5d states. We observe that doping monometallic Pt clusters even with a single Re atom increases their binding energy values and widens the bimetallic cluster highest occupied molecular orbital-lowest unoccupied molecular orbital gap. As catalysis occurs at elevated temperatures, we explore the concept of cluster fluxionality for Re-Pt minima in terms of the calculated isomer occupation probability, P(T). This allows us to quantify the abundance of GM and low-energy isomer configurations as a function of temperature. This is done at size 5 atoms due to the wide isomer observed variety. Our calculations indicate that for pure Re5, the P(T) of the GM configuration substantially decreases after 750 K. Especially, for Re4Pt1, the GM is the dominant structure up to nearly 700 K when the second-energy isomer becomes the stable one. Although no ordering changes are seen for Re3Pt2, Re2Pt3, and Re1Pt4, we do observe a structural transition-between the GM and the second isomer-for pure Pt5 above 1000 K. We expect this type of combined first-principles analysis to add to the overall, continuous understanding of the stability and energetics of ultrafine and highly-dispersed Re-Pt petroleum-reforming catalysts and the scarce available information on this particular bimetallic system.
Collapse
Affiliation(s)
- Luis E Gálvez-González
- Programa de Doctorado en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Alvaro Posada-Amarillas
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Lauro Oliver Paz-Borbón
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
6
|
Zhou J, Du L, Braedt DL, Miao J, Senanayake SD. Growth, sintering, and chemical states of Co supported on reducible CeO 2(111) thin films: The effects of the metal coverage and the nature of the support. J Chem Phys 2021; 154:044704. [PMID: 33514090 DOI: 10.1063/5.0036952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The growth, sintering, and interaction of cobalt with ceria were studied under ultrahigh vacuum conditions by vapor-deposition of Co onto well-defined CeOx(111) (1.5 < x < 2) thin films grown on Ru(0001). Charge transfer from Co to ceria occurs upon deposition of Co on CeO1.96 and partially reduced CeO1.83 at 300 K. X-ray photoelectron spectroscopy studies show that Co is oxidized to Co2+ species at the cost of the reduction of Ce4+ to Ce3+, at a lesser extent on reduced ceria. Co2+ is the predominant species on CeO1.96 at low Co coverages (e.g., ≤0.20 ML). The ratio of metallic Co/Co2+ increases with the increase in the Co coverage. However, both metallic Co and Co2+ species are present on CeO1.83 even at low Co coverages with metallic Co as the major species. Scanning tunneling microscopy results demonstrate that Co tends to wet the CeO1.96 surface at very low Co coverages at room temperature forming one-atomic layer high structures of Co-O-Ce. The increase in the Co coverage can cause the particle growth into three-dimensional structures. The formation of slightly flatter Co particles was observed on reduced CeO1.83. In comparison with other transition metals including Ni, Rh, Pt, and Au, our studies demonstrate that Co on ceria exhibits a smaller particle size and higher thermal stability, likely arising from strong metal-support interactions. The formed particles upon Co deposition at 300 K are present on the ceria surface after heating to 1000 K. The Co-ceria interface can be tuned by varying the Co metal coverage, the annealing temperature, and the nature of the ceria surface.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USAChemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Linze Du
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Daniel L Braedt
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Jintao Miao
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
7
|
Chang CC, Liu CY, Sun YC. Effective methane conversion to methanol on bi-functional graphene-oxide-supported platinum nanoclusters (Pt 5) - a DFT study. Phys Chem Chem Phys 2020; 22:4967-4973. [PMID: 32073010 DOI: 10.1039/c9cp06002b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nowadays identifying a high-performance catalyst for converting methane to methanol is crucial because methanol serves as an excellent energy source and has wide chemical applications. In the present study, we used DFT, a computational chemistry method, to investigate the reaction mechanism of methanol production by conversion of methane on Pt5 nanoparticles supported on graphene oxide (GO) substrates. Computational results predicted that the Pt5/GO system exhibits excellent catalysis efficiency, compared with those of the previously examined Pt2/GO and Pt2O2/GO systems. Energetics of examined molecular species and the reaction mechanism showed that the Pt5/GO system exhibits high stability in this catalysis reaction and catalyzes the reaction efficiently. Moreover, between the two investigated surfaces GO and UGO, GO performed better and should be a promising catalyst support to convert methane into methanol.
Collapse
Affiliation(s)
- Chun-Chih Chang
- Department of Chemical and Materials Engineering, Chinese Culture University, No. 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan.
| | | | | |
Collapse
|
8
|
Vasilchenko D, Asanova T, Kolesov B, Tsygankova A, Stadnichenko A, Slavinskaya E, Gerasimov E, Lomachenko K, Boronin A, Korenev S. Cerium(III) Nitrate Derived CeO
2
Support Stabilising PtO
x
Active Species for Room Temperature CO Oxidation. ChemCatChem 2020. [DOI: 10.1002/cctc.201902146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Danila Vasilchenko
- Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of Science Novosibirsk 630090 Russian Federation
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
| | - Tatyana Asanova
- Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of Science Novosibirsk 630090 Russian Federation
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
| | - Boris Kolesov
- Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of Science Novosibirsk 630090 Russian Federation
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
| | - Alphiya Tsygankova
- Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of Science Novosibirsk 630090 Russian Federation
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
| | - Andrey Stadnichenko
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Novosibirsk 630090 Russian Federation
| | - Elena Slavinskaya
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Novosibirsk 630090 Russian Federation
| | - Evgeny Gerasimov
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Novosibirsk 630090 Russian Federation
| | | | - Andrey Boronin
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Novosibirsk 630090 Russian Federation
| | - Sergey Korenev
- Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of Science Novosibirsk 630090 Russian Federation
- Slavinskaya, E. Gerasimov, A. Boronin, S. KorenevNovosibirsk State University Novosibirsk 630090 Russian Federation
| |
Collapse
|
9
|
Paz-Borbón LO, Buendía F, Garzón IL, Posada-Amarillas A, Illas F, Li J. CeO 2(111) electronic reducibility tuned by ultra-small supported bimetallic Pt-Cu clusters. Phys Chem Chem Phys 2019; 21:15286-15296. [PMID: 31090767 DOI: 10.1039/c9cp01772k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Controlling Ce4+ to Ce3+ electronic reducibility in a rare-earth binary oxide such as CeO2 has enormous applications in heterogeneous catalysis, where a profound understanding of reactivity and selectivity at the atomic level is yet to be reached. Thus, in this work we report an extensive DFT-based Basin Hopping global optimization study to find the most stable bimetallic Pt-Cu clusters supported on the CeO2(111) oxide surface, involving up to 5 atoms in size for all compositions. Our PBE+U global optimization calculations indicate a preference for Pt-Cu clusters to adopt 2D planar geometries parallel to the oxide surface, due to the formation of strong metal bonds to oxygen surface sites and charge transfer effects. The calculated adsorption energy values (Eads) for both mono- and bimetallic systems are of the order of 1.79 up to 4.07 eV, implying a strong metal cluster interaction with the oxide surface. Our calculations indicate that at such sub-nanometer sizes, the number of Ce4+ surface atoms reduced to Ce3+ cations is mediated by the amount of Cu atoms within the cluster, reaching a maximum of three Ce3+ for a supported Cu5 cluster. Our computational results have critical implications on the continuous understanding of the strong metal-support interactions over reducible oxides such as CeO2, as well as the advancement of frontier research areas such as heterogeneous single-atom catalysts (SAC) and single-cluster catalysts (SCC).
Collapse
Affiliation(s)
- Lauro Oliver Paz-Borbón
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 CDMX, Mexico.
| | - Fernando Buendía
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 CDMX, Mexico.
| | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 CDMX, Mexico.
| | - Alvaro Posada-Amarillas
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas & Rosales, 83000 Hermosillo, Sonora, Mexico
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Quιmica Teòrica i Computacional (IQTCUB), de la Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jun Li
- Department of Chemistry, Tsinghua University, Haidian District, Beijing 100084, China and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Effect of ceria and zirconia supports on NO reduction over platinum-group metal catalysts: A DFT study with comparative experiments. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|
12
|
Baletto F. Structural properties of sub-nanometer metallic clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:113001. [PMID: 30562724 DOI: 10.1088/1361-648x/aaf989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
At the nanoscale, the investigation of structural features becomes fundamental as we can establish relationships between cluster geometries and their physicochemical properties. The peculiarity lies in the variety of shapes often unusual and far from any geometrical and crystallographic intuition clusters can assume. In this respect, we should treat and consider nanoparticles as a new form of matter. Nanoparticle structures depend on their size, chemical composition, ordering, as well as external conditions e.g. synthesis method, pressure, temperature, support. On top of that, at finite temperatures nanoparticles can fluctuate among different structures, opening new and exciting horizons for the design of optimal nanoparticles for advanced applications. This article aims to overview geometrical features of transition metal clusters and of their various rearrangements.
Collapse
Affiliation(s)
- Francesca Baletto
- Physics Department, King's College London, WC2R 2LS, London, United Kingdom
| |
Collapse
|
13
|
Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J, Pidko EA, Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 2018; 47:8307-8348. [PMID: 30204184 PMCID: PMC6240816 DOI: 10.1039/c8cs00398j] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/19/2022]
Abstract
An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination.
Collapse
Affiliation(s)
- Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Anton A. Bondarenko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Mikhail V. Polynski
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Jittima Meeprasert
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Evgeny A. Pidko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| |
Collapse
|
14
|
Gálvez-González LE, Juárez-Sánchez JO, Pacheco-Contreras R, Garzón IL, Paz-Borbón LO, Posada-Amarillas A. CO2 adsorption on gas-phase Cu4−xPtx (x = 0–4) clusters: a DFT study. Phys Chem Chem Phys 2018; 20:17071-17080. [DOI: 10.1039/c8cp00818c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition and noble metal clusters have proven to be critical novel materials, potentially offering major advantages over conventional catalysts in a range of value-added catalytic processess such as carbon dioxide transformation to methanol.
Collapse
Affiliation(s)
- Luis E. Gálvez-González
- Programa de Doctorado en Ciencias (Física)
- División de Ciencias Exactas y Naturales
- Universidad de Sonora
- Hermosillo
- Mexico
| | | | | | - Ignacio L. Garzón
- Instituto de Física
- Universidad Nacional Autónoma de México
- 01000 Cd. de México
- Mexico
| | | | | |
Collapse
|