1
|
Du MX, Han LX, Wang SR, Xu KJ, Zhu WR, Qiao X, Liu CY. Solvent Effects on the 1 H-NMR Chemical Shifts of Imidazolium-Based Ionic Liquids. Chemphyschem 2023; 24:e202300292. [PMID: 37491736 DOI: 10.1002/cphc.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
The 1 H nuclear magnetic resonance (1 H-NMR) spectrum is a useful tool for characterizing the hydrogen bonding (H-bonding) interactions in ionic liquids (ILs). As the main hydrogen bond (H-bond) donor of imidazolium-based ILs, the chemical shift (δH2 ) of the proton in the 2-position of the imidazolium ring (H2) exhibits significant and complex solvents, concentrations and anions dependence. In the present work, based on the dielectric constants (ϵ) and Kamlet-Taft (KT) parameters of solvents, we identified that the δH2 are dominated by the solvents polarity and the competitive H-bonding interactions between cations and anions or solvents. Besides, the solvents effects on δH2 are understood by the structure of ILs in solvents: 1) In diluted solutions of inoizable solvents, ILs exist as free ions and the cations will form H-bond with solvents, resulting in δH2 being independent with anions but positively correlated with βS . 2) In diluted solutions of non-ionzable solvents, ILs exist as contact ion-pairs (CIPs) and H2 will form H-bond with anions. Since non-ionizable solvents hardly influence the H-bonding interactions between H2 and anions, the δH2 are not related to βS but positively correlated with βIL .
Collapse
Affiliation(s)
- Ming-Xuan Du
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Lin-Xue Han
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Shi-Rong Wang
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Kuang-Jie Xu
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Wen-Rui Zhu
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Xin Qiao
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Chen-Yang Liu
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
High-permeance Mg2+/Li+ separation nanofiltration membranes intensified by quadruple imidazolium salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Morais EM, Abdurrokhman I, Martinelli A. Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Lai A, Leong N, Zheng D, Ford L, Nguyen TH, Williams HD, Benameur H, Scammells PJ, Porter CJH. Biocompatible Cationic Lipoamino Acids as Counterions for Oral Administration of API-Ionic Liquids. Pharm Res 2022; 39:2405-2419. [PMID: 35661084 PMCID: PMC9556374 DOI: 10.1007/s11095-022-03305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Purpose The use of ionic liquids (ILs) in drug delivery has focused attention on non-toxic IL counterions. Cationic lipids can be used to form ILs with weakly acidic drugs to enhance drug loading in lipid-based formulations (LBFs). However, cationic lipids are typically toxic. Here we explore the use of lipoaminoacids (LAAs) as cationic IL counterions that degrade or digest in vivo to non-toxic components. Methods LAAs were synthesised via esterification of amino acids with fatty alcohols to produce potentially digestible cationic LAAs. The LAAs were employed to form ILs with tolfenamic acid (Tol) and the Tol ILs loaded into LBF and examined in vitro and in vivo. Results Cationic LAAs complexed with Tol to generate lipophilic Tol ILs with high drug loading in LBFs. Assessment of the LAA under simulated digestion conditions revealed that they were susceptible to enzymatic degradation under intestinal conditions, forming biocompatible FAs and amino acids. In vitro dispersion and digestion studies of Tol ILs revealed that formulations containing digestible Tol ILs were able to maintain drug dispersion and solubilisation whilst the LAA were breaking down under digesting conditions. Finally, in vivo oral bioavailability studies demonstrated that oral delivery of a LBF containing a Tol IL comprising a digestible cationic lipid counterion was able to successfully support effective oral delivery of Tol. Conclusions Digestible LAA cationic lipids are potential IL counterions for weakly acidic drug molecules and digest in situ to form non-toxic breakdown products. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03305-y.
Collapse
Affiliation(s)
- Anthony Lai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nathania Leong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Dan Zheng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Leigh Ford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Uniquest, General Purpose South Building, Staff House Rd, The University of Queensland, QLD, 4072, Brisbane, Australia
| | - Tri-Hung Nguyen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- CSL Limited, 45 Poplar Road, Parkville, VIC, 3052, Australia
| | - Hassan Benameur
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Damodaran K. Recent advances in NMR spectroscopy of ionic liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:1-27. [PMID: 35292132 DOI: 10.1016/j.pnmrs.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This review presents recent developments in the application of NMR spectroscopic techniques in the study of ionic liquids. NMR has been the primary tool not only for the structural characterization of ionic liquids, but also for the study of dynamics. The presence of a host of NMR active nuclei in ionic liquids permits widespread use of multinuclear NMR experiments. Chemical shifts and multinuclear coupling constants are used routinely for the structure elucidation of ionic liquids and of products formed by their covalent interactions with other materials. Also, the availability of a multitude of NMR techniques has facilitated the study of dynamical processes in them. These include the use of NOESY to study inter-ionic interactions, pulsed-field gradient techniques for probing transport properties, and relaxation measurements to elucidate rotational dynamics. This review will focus on the application of each of these techniques to investigate ionic liquids.
Collapse
Affiliation(s)
- Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
6
|
|
7
|
Lengvinaitė D, Kvedaraviciute S, Bielskutė S, Klimavicius V, Balevicius V, Mocci F, Laaksonen A, Aidas K. Structural Features of the [C4mim][Cl] Ionic Liquid and Its Mixtures with Water: Insight from a 1H NMR Experimental and QM/MD Study. J Phys Chem B 2021; 125:13255-13266. [PMID: 34806880 PMCID: PMC8667039 DOI: 10.1021/acs.jpcb.1c08215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Indexed: 01/05/2023]
Abstract
The 1H NMR chemical shift of water exhibits non-monotonic dependence on the composition of an aqueous mixture of 1-butyl-3-methylimidazolium chloride, [C4mim][Cl], ionic liquid (IL). A clear minimum is observed for the 1H NMR chemical shift at a molar fraction of the IL of 0.34. To scrutinize the molecular mechanism behind this phenomenon, extensive classical molecular dynamics simulations of [C4mim][Cl] IL and its mixtures with water were carried out. A combined quantum mechanics/molecular mechanics approach based on the density functional theory was applied to predict the NMR chemical shifts. The proliferation of strongly hydrogen-bonded complexes between chloride anions and water molecules is found to be the reason behind the increasing 1H NMR chemical shift of water when its molar fraction in the mixture is low and decreasing. The model shows that the chemical shift of water molecules that are trapped in the IL matrix without direct hydrogen bonding to the anions is considerably smaller than the 1H NMR chemical shift predicted for the neat water. The structural features of neat IL and its mixtures with water have also been analyzed in relation to their NMR properties. The 1H NMR spectrum of neat [C4mim][Cl] was predicted and found to be in very reasonable agreement with the experimental data. Finally, the experimentally observed strong dependence of the chemical shift of the proton at position 2 in the imidazolium ring on the composition of the mixture was rationalized.
Collapse
Affiliation(s)
- Dovilė Lengvinaitė
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | | | - Stasė Bielskutė
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Vytautas Klimavicius
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Vytautas Balevicius
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Francesca Mocci
- Università
di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella
Universitaria di Monserrato, Cagliari I-09042, Monserrato, Italy
| | - Aatto Laaksonen
- Energy Engineering,
Division of Energy Science, Luleå
University of Technology, Luleå 97181, Sweden
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
- Center of
Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry, Iasi 700469, Romania
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kęstutis Aidas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
8
|
Fatima S, Varras PC, Atia-Tul-Wahab, Choudhary MI, Siskos MG, Gerothanassis IP. On the molecular basis of H 2O/DMSO eutectic mixtures by using phenol compounds as molecular sensors: a combined NMR and DFT study. Phys Chem Chem Phys 2021; 23:15645-15658. [PMID: 34268541 DOI: 10.1039/d0cp05861k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR and DFT studies of phenol compounds as molecular sensors were carried out to investigate H2O/DMSO eutectic mixtures at a molecular level. The experimental 1H NMR chemical shifts of the OH groups, δexp(OH), of phenol, paracoumaric acid, and vanillic acid show maximum deshielding and, thus, hydrogen bond interactions in the range of mole fractions 0.20 < χ(DMSO) < 0.33. In the mole fractions χ(DMSO) < 0.2, a progressive decrease in δexp(OH) was observed which demonstrates a decrease in hydrogen bond interactions at infinite dilution in H2O, despite the increase in the number of available hydrogen bond acceptor and donor sites. DFT calculated δcalc(OH) of minimum energy solvation clusters were shown to be in reasonable agreement with the pattern in experimental δexp(OH) data. The chemical shift deshielding and, thus, increased hydrogen bond interactions in the natural product + DMSO + nH2O (n = 2, 3) solvation clusters, relative to complexes in DMSO or H2O solutions, cannot be attributed to a single structural parameter of the cooperative interactions between H2O and DMSO molecules with the phenol OH groups of the natural products. The minimum energy conformers of phenol compounds + 2H2O + DMSO complexes are in excellent agreement with a recent low temperature neutron diffraction experiment of 3D2O + DMSO and demonstrate a general structural motif of solvation complexes. The combined use of 1H NMR and DFT studies with emphasis on δ(OH) of phenol compounds, as molecular sensors, can provide an effective method for the study of solute-solvent interactions at the atomic level.
Collapse
Affiliation(s)
- Sana Fatima
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan
| | | | | | | | | | | |
Collapse
|
9
|
Rezaeian M, Izadyar M, Housaindokht MR. Exploring the interaction of amino acid-based ionic liquids in water and organic solvents: Insight from MD simulations and QM calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Fedorova I, Krestyaninov M, Safonova L. Structure and ion-ion interactions in trifluoroacetate-based ionic liquids: Quantum chemical and molecular dynamics simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Pablos JL, Tiemblo P, Ellis G, Corrales T. Chloroaluminate Gel Electrolytes Prepared with Copolymers Based on Imidazolium Ionic Liquids and Deep Eutectic Solvent AlCl 3:Urea. Polymers (Basel) 2021; 13:polym13071050. [PMID: 33801632 PMCID: PMC8037023 DOI: 10.3390/polym13071050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
Polymer gel electrolytes (PGEs) have been prepared with copolymers based on imidazolium ionic liquids and the deep eutectic mixture of AlCl3:urea (uralumina) as liquid electrolyte. The copolymers were synthesized by photopolymerization of vinylpirrolidone or methylmethacrylate with imidazolium bis (trifluoromethane sulfonyl) imide (TFSI) ionic liquid monomer and mixed in an increasing range of wt.% with uralumina. The rheology and electrochemical activity of PGEs were highly dependent on the molar ratio of charged groups and copolymer content. Structure of the PGEs was studied by FTIR and Raman spectroscopy and a correlation between interactions polymer/uralumina and changes in speciation of uralumina was established. Despite the low molecular weight of the copolymers, the resulting polymer electrolytes develop elastomeric character associated with the binding ionic species. Although there is room to improve the electrochemical activity, in this study these new gels provide sufficient electroactivity to make them feasible alternatives as electrolytes in secondary aluminum batteries.
Collapse
|
12
|
Mason TG, Seeger ZL, Nguyen ALP, Fujita K, Izgorodina EI. Predicting Entropic Effects of Water Mixing with Ionic Liquids Containing Anions of Strong Hydrogen Bonding Ability: Role of the Cation. J Phys Chem B 2020; 124:9182-9194. [PMID: 33007160 DOI: 10.1021/acs.jpcb.0c07732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic liquids (ILs) such as choline dihydrogen phosphate exhibit an extraordinary solubilizing ability for proteins such as cytochrome C when mixed with 20 wt % water. Most widely used imidazolium-based ionic liquids coupled with dihydrogen phosphate do not exhibit the same solubilizing properties, suggesting that a multifunctional cation such as choline might play a key role in enhancing these properties of ionic liquid mixtures with water. In this theoretical work, we compare intermolecular interactions between the water molecule and ionic liquid ions in two ion-paired clusters of choline- and 1-butyl-3-methyl-imidazolium-based ionic liquids coupled with acetate, dihydrogen phosphate, and mesylate. Gibbs free energy (GFE) of solvation of water in these ionic liquids was calculated. Incorporation of a water molecule into ionic liquid clusters was accompanied by negative GFEs of solvation in both types of cations. These results were in good agreement with previously reported experimental GFEs of solvation of water in ILs. Compared to imidazolium-based clusters, strong interionic interactions of choline ionic liquids resulted in more negative GFEs due to their smaller deformation upon the addition of a water molecule, with dihydrogen phosphate and mesylate predicting the lowest GFEs of -30.1 and -43.5 kJ/mol-1, respectively. Lower GFEs of solvation of water in choline-based clusters were also accompanied with smaller entropic penalties, suggesting that water easily incorporates itself into the existing ionic network. Analysis of the intramolecular bonds within the water molecule showed that the choline hydroxyl group donates electron density to the neighboring water molecule, leading to additional polarization. The predicted infrared spectra of clusters of ionic liquids with water showed a pronounced red shift due to strongly polarized O-H bonds, in excellent agreement with the experimentally measured infrared spectra of ionic liquid mixtures with water. Increased polarization of water in choline-based ionic liquids undoubtedly creates more effective solvents for stabilizing biological molecules such as proteins.
Collapse
Affiliation(s)
- Thomas G Mason
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Zoe L Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Anh L P Nguyen
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Kyoko Fujita
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ekaterina I Izgorodina
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| |
Collapse
|
13
|
Seeger ZL, Izgorodina EI. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. J Chem Theory Comput 2020; 16:6735-6753. [PMID: 32865998 DOI: 10.1021/acs.jctc.0c00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clusters of two ion pairs of imidazolium-based ionic liquids were optimized with 43 different levels of theory, including DFT functionals and MP2-based methods combined with varying Dunning's basis sets, and added dispersion corrections. Better preforming DFT functionals were then applied to clusters consisting of four ion pairs. Excellent performance of some DFT functionals for the two ion pair clusters did not always match that of the four ion-paired clusters despite interionic distances remaining constant between the optimized two and four ion-paired clusters of the same ionic liquid. Combinations of DFT functional and basis set such as ωB97X-D/cc-pVDZ, M06-2X/aug-cc-pVDZ, B3LYP-D3/cc-pVTZ, and TPSS-D3/cc-pVTZ gave excellent results for geometry optimization of two ion-paired clusters of imidazolium ionic liquids but gave larger deviations when applied to the four ion-paired clusters of varying ionic liquids. Empirical dispersion corrections were seen to be crucial in correctly capturing correlation effects in the studied ionic liquid clusters, becoming more important in larger clusters. Dunning's double-ζ basis set, cc-pVDZ, is associated with the smallest root mean squared deviations for geometries; however, it also produces the largest deviations in total electronic energies. ωB97X-D and M06-2X produced the best performance with the augmented version of this basis set. The triple-ζ basis set, cc-pVTZ, leads to the best performance of most of the DFT functionals (especially the dispersion-corrected ones) used, whereas its augmented version, aug-cc-pVTZ, was not seen to improve results. The combinations of functional and basis set that gave the best geometry and energetics in both two and four ion-paired clusters were PBE-D3/cc-pVTZ, ωB97X-D/aug-cc-pVDZ, and BLYP-D3/cc-pVTZ. All three combinations are recommended for geometry optimizations of larger clusters of ionic liquids. PBE-D3/cc-pVTZ performed the best with an average deviation of 2.3 kJ mol-1 and a standard deviation of 3.4 kJ mol-1 for total electronic energy when applied to four ion-paired clusters. Geometries optimized with FMO2-SRS-MP2/cc-pVTZ produced total energy within 2.0 kJ mol-1 off the benchmark in two ion-paired clusters, with the cc-pVDZ basis set performing unsurprisingly poorly with the same method. The error increased to 4.8 kJ mol-1 on average in four ion-paired clusters, with the smallest RMSD deviations in geometries when compared to the benchmark ones. This study is the first report that investigated the performance of DFT functionals for two and four ion-paired clusters of a wide range of ionic liquids consisting of commonly used cations such as pyrrolidinium, imidazolium, pyridinium, and ammonium. It also identified the importance of assessing the performance of quantum chemical methods for ionic liquids on a variety of cation-anion combinations.
Collapse
Affiliation(s)
- Zoe L Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Ekaterina I Izgorodina
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Saielli G. Computational NMR Spectroscopy of Ionic Liquids: [C 4C 1im]Cl/Water Mixtures. Molecules 2020; 25:molecules25092085. [PMID: 32365699 PMCID: PMC7249182 DOI: 10.3390/molecules25092085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
In this work, I have analyzed the structure of binary mixtures of 1-butyl-3-methylimidazolium chloride ionic liquid, [C4C1im]Cl, and water, using computational NMR spectroscopy. The structure of the complex fluid phase, where the ionic and hydrophobic nature of ionic liquids is further complicated by the addition of water, is first generated by classical Molecular Dynamics (MD) and then validated by calculating the NMR properties with DFT at the ONIOM(B3LYP/cc-pVTZ//B3LYP/3-21G) on clusters extracted during the MD trajectories. Three ionic liquid/water mixtures have been considered with the [C4C1im]Cl mole fraction of 1.00, 0.50, and 0.01, that is the pure ionic liquid [C4C1im]Cl, the equimolar [C4C1im]Cl/water mixture, and a diluted solution of [C4C1im]Cl in water. A good agreement is obtained with published experimental data that, at the same time, validates the structural features obtained from the MD and the force field used, and provides an example of the power of NMR spectroscopy applied to complex fluid phases.
Collapse
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology, Unit of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
15
|
Chan CTL, Ma C, Chan RCT, Ou HM, Xie HX, Wong AKW, Wang ML, Kwok WM. A long lasting sunscreen controversy of 4-aminobenzoic acid and 4-dimethylaminobenzaldehyde derivatives resolved by ultrafast spectroscopy combined with density functional theoretical study. Phys Chem Chem Phys 2020; 22:8006-8020. [PMID: 32239002 DOI: 10.1039/c9cp07014a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-Aminobenzoic acid (PABA) is one of the earliest patented and most commonly used sunscreen components. There is however a long-lasting controversy on its photo-protective efficacy owing to the lack of information on its protolytic equilibrium and photo-dynamics after absorption of ultraviolet radiation in physiologically relevant aqueous solution. The excitation dynamics in water also remains largely unknown for analogs of PABA such as 4-dimethylaminoacetophenone (DMAAP) and 4-dimethylaminobenzaldehyde (DMABA) which are recognized as prototypes for photo-induced twisted intramolecular charge transfer (TICT). Herein we report a combined application of femtosecond broadband time-resolved fluorescence and transient absorption coupled with density functional theoretical study for PABA, DMAAP, and DMABA under several solvent conditions with representative properties in terms of the pH, polarity and hydrogen bonding capacity. The results we gained demonstrate that, in a neutral aqueous solution, PABA taking the deprotonated anion form in the ground state undergoes rapid protonation after excitation, producing excited state species in the neutral form that may shift effectively by intersystem crossing (ISC) to the long-lasting triplet state capable of damaging nucleic acids. This provides evidence at the molecular level for the detrimental effect of PABA if used as a sunscreen ingredient. In contrast, our investigation on DMAAP and DMABA unveils an unusual solvent controlled deactivation dynamics rendered by the participation of the carbonyl oxygen associated nOπ* state featuring energy and structure strongly responsive to solvent properties. In particular, these molecules in water exhibit solute-solvent hydrogen bonding at the sites of the carbonyl oxygen and the amino nitrogen which is, respectively, weakened and strengthened after the excitation, leading to state reversal and formation of a nOπ* state with a peculiar non-planar structure. This quenches strongly the excitation, eliminates the TICT, suppresses the ISC and opens up the otherwise inaccessible internal conversion (IC) to account for ∼80% of the entire deactivation. The IC, observed to proceed at a rate of ∼2.5 ps, allows the effective recovery of the ground state, providing substantial protection against ultraviolet irradiation. Moreover, the revelation of highly solvent sensitive fluorescence emission from DMABA and DMAAP implies the potential application of these molecules as the functional element in the design of sensory materials for probing the polarity and hydrogen bonding character of the surrounding environment.
Collapse
Affiliation(s)
- Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Hui-Min Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Han-Xin Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
16
|
Kang S, Chung YG, Kang JH, Song H. CO2 absorption characteristics of amino group functionalized imidazolium-based amino acid ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111825] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Zhang J, Song L, Li K, An Q, Ma H, Yang L, Wei L. Water addition enhanced thermal stability of alkylimidazolium acetate in Ionosolv treatment of lignin. Int J Biol Macromol 2019; 141:1055-1064. [DOI: 10.1016/j.ijbiomac.2019.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
18
|
Fan Y, Niu Z, Xu C, Yang L, Yang T. Protic Ionic Liquids as Efficient Solvents in Microwave-Assisted Extraction of Rhein and Emodin from Rheum palmatum L. Molecules 2019; 24:E2770. [PMID: 31366111 PMCID: PMC6695579 DOI: 10.3390/molecules24152770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rheum palmatum L. (R. palmatum L.) is a traditional Chinese herb and food, in which rhein and emodin are the main bioactive components. The extraction of the two compounds from R. palmatum L. is, thus, of great importance. In this work, protic ionic liquids (PILs) were applied in the microwave-assisted extraction (MAE) of rhein and emodin from R. palmatum L., which avoids the toxicity of organic solvents. The results of the present study indicate that PILs possessing higher polarity exhibit higher extraction ability due to their stronger absorption ability for microwave irradiation. Compared with conventional solvents, such as methanol, trichloromethane, and deep eutectic solvents (DESs), the PIL, 1-butyl-3-himidazolium methanesulfonate ([BHim]MeSO3) reported herein is more efficient. The selected extraction conditions of liquid-solid ratio, microwave irradiation time, microwave irradiation power, and PIL concentration were 40 g·g-1, 50 s, 280 W, and 80%, respectively. Under the selected conditions, the extraction yields of rhein and emodin were 7.8 and 4.0 mg·g-1, respectively. These results suggest that PILs are efficient extraction solvents for the separation of active components from natural products.
Collapse
Affiliation(s)
- Yunchang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Zeyu Niu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chen Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Lei Yang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Tuojie Yang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
19
|
Low K, Tan SYS, Izgorodina EI. An ab initio Study of the Structure and Energetics of Hydrogen Bonding in Ionic Liquids. Front Chem 2019; 7:208. [PMID: 31024894 PMCID: PMC6468050 DOI: 10.3389/fchem.2019.00208] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/18/2019] [Indexed: 01/09/2023] Open
Abstract
Unlike typical hydrogen-bonded networks such as water, hydrogen bonded ionic liquids display some unusual characteristics due to the complex interplay of electrostatics, polarization, and dispersion forces in the bulk. Protic ionic liquids in particular contain close-to traditional linear hydrogen bonds that define their physicochemical properties. This work investigates whether hydrogen bonded ionic liquids (HBILs) can be differentiated from aprotic ionic liquids with no linear hydrogen bonds using state-of-the-art ab initio calculations. This is achieved through geometry optimizations of a series of single ion pairs of HBILs in the gas phase and an implicit solvent. Using benchmark CCSD(T)/CBS calculations, the electrostatic and dispersion components of the interaction energy of these systems are compared with those of aprotic ionic liquids. The inclusion of the implicit solvent significantly influenced geometries of single ion pairs, with the gas phase shortening the hydrogen bond to reduce electrostatic interactions. HBILs were found to have stronger interactions by at least 10EtMeNH0 kJ mol−1 over aprotic ILs, clearly highlighting the electrostatic nature of hydrogen bonding. Geometric and energetic parameters were found to complement each other in determining the extent of hydrogen bonding present in these ionic liquids.
Collapse
Affiliation(s)
- Kaycee Low
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Samuel Y S Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Ariai J, Saielli G. "Through-Space" Relativistic Effects on NMR Chemical Shifts of Pyridinium Halide Ionic Liquids. Chemphyschem 2019; 20:108-115. [PMID: 30312005 DOI: 10.1002/cphc.201800955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 12/27/2022]
Abstract
We have investigated, using two-component relativistic density functional theory (DFT) at ZORA-SO-BP86 and ZORA-SO-PBE0 level, the occurrence of relativistic effects on the 1 H, 13 C, and 15 N NMR chemical shifts of 1-methylpyridinium halides [MP][X] and 1-butyl-3-methylpyridinium trihalides [BMP][X3 ] ionic liquids (ILs) (X=Cl, Br, I) as a result of a non-covalent interaction with the heavy anions. Our results indicate a sizeable deshielding effect in ion pairs when the anion is I- and I3 - . A smaller, though nonzero, effect is observed also with bromine while chlorine based anions do not produce an appreciable relativistic shift. The chemical shift of the carbon atoms of the aromatic ring shows an inverse halogen dependence that has been rationalized based on the little C-2s orbital contribution to the σ-type interaction between the cation and anion. This is the first detailed account and systematic theoretical investigation of a relativistic heavy atom effect on the NMR chemical shifts of light atoms in the absence of covalent bonds. Our work paves the way and suggests the direction for an experimental investigation of such elusive signatures of ion pairing in ILs.
Collapse
Affiliation(s)
- Jama Ariai
- Department of Chemical Sciences University of Padova, Via Marzolo 1, 35131, Padua, Italy.,Present address: Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Giacomo Saielli
- CNR Institute on Membrane Technology, Padova Unit, Via Marzolo 1, 35131, Padua, Italy
| |
Collapse
|
21
|
|
22
|
Low K, Wylie L, Scarborough DLA, Izgorodina EI. Is it possible to control kinetic rates of radical polymerisation in ionic liquids? Chem Commun (Camb) 2018; 54:11226-11243. [PMID: 30159564 DOI: 10.1039/c8cc02012d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Experimental studies have noted the often surprising and unpredictable effect of ionic liquids as solvents on reaction kinetics for radical polymerisation. We theoretically investigate the energetic and structural effects of ionic liquids, both protic and aprotic, on radical stability, presenting stabilisation of the radical by the ionic liquid by up to -78.0 kJ mol-1. Kinetic data relating to propagating systems for several industrially viable monomers indicate that propagation rates can be increased or decreased (by up to 6 orders of magnitude) depending on the monomer and ionic liquid combination. The interplay of activation entropy and activation enthalpy, much of which depends on hydrogen bonding between the solvent and reactants, play a crucial role in controlling reaction kinetics. It is concluded that the use of cheaper protic ionic liquids as solvents may be viable for improved kinetic control over radical reactions.
Collapse
Affiliation(s)
- Kaycee Low
- Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
23
|
Li S, Saielli G, Wang Y. Aggregation behavior of dihexadecylviologen bistriflimide ionic liquid crystal in different solvents: influence of polarity and concentration. Phys Chem Chem Phys 2018; 20:22730-22738. [PMID: 30137072 DOI: 10.1039/c8cp03055c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solutions of 1,1'-dihexadecyl-4,4'-bipyridinium di[bis(trifluoromethanesulfonyl)imide] salt, also known as dihexadecylviologen bistriflimide, in deuterated acetonitrile (ACN), dichloromethane (DCM) and chloroform (CDCl3), respectively, were investigated by the combination of 1H and DOSY NMR spectroscopy, DFT calculations and MD simulation to understand the influence of solvent polarity and solute concentration (10-5-10-1 M) on its aggregation behavior. We found that the polar solvent acetonitrile (ACN) does not favor ion aggregation and cluster formation. In the whole range of concentrations investigated, the system appears to be dominated by neutral ion pairs composed of one cation and two anions, possibly in fast equilibrium (on the NMR time scale) with small or slightly larger aggregates. The diffusion coefficient of the cationic species is only weakly affected by concentration. In contrast, the low-polar solvents of chloroform (CDCl3) and dichloromethane (DCM) strongly favor cluster formation above a certain concentration and the viologen diffusion coefficient in CDCl3 is much smaller and more strongly dependent on concentration than that in ACN. The information obtained from the MD simulations suggests that the aggregates have a structure similar to the isotropic liquid phase of the viologen-based ionic liquids and ionic liquid crystals. The lifetimes of such large clusters appear to be relatively long, beyond the time scale of tens of nanoseconds. Moreover, the results from the aromatic proton NMR resonances provide some insights on the dielectric constants inside the viologen aggregates.
Collapse
Affiliation(s)
- Shen Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, Beijing, 100190, China.
| | | | | |
Collapse
|
24
|
Saielli G. Computational Spectroscopy of Ionic Liquids for Bulk Structure Elucidation. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology; Unit of Padova; Via Marzolo 1-35131 Padova Italy
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| |
Collapse
|
25
|
Thomas R, Hossain M, Mary YS, Resmi K, Armaković S, Armaković SJ, Nanda AK, Ranjan VK, Vijayakumar G, Van Alsenoy C. Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Hossain M, Thomas R, Mary YS, K.S.Resmi, Armaković S, Armaković SJ, Nanda AK, Vijayakumar G, Alsenoy CV. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Swamy VP, Thulasiram HV, Rastrelli F, Saielli G. Ion pairing in 1-butyl-3-methylpyridinium halide ionic liquids studied using NMR and DFT calculations. Phys Chem Chem Phys 2018; 20:11470-11480. [DOI: 10.1039/c8cp01557k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experimental and calculated 1H, 13C and 15N NMR data of bulk 1-butyl-3-methylimidazolium halides ionic liquids provide key insights on their ion pairing.
Collapse
Affiliation(s)
- Vincent P. Swamy
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411008
- India
| | | | | | - Giacomo Saielli
- Istituto per la Tecnologia delle Membrane del CNR
- Unità di Padova
- Padova
- Italy
| |
Collapse
|
28
|
Wang J, Liu Y, Li W, Gao G. Prediction of 1H NMR chemical shifts for ionic liquids: strategy and application of a relative reference standard. RSC Adv 2018; 8:28604-28612. [PMID: 35548389 PMCID: PMC9084412 DOI: 10.1039/c8ra04822c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/04/2018] [Indexed: 11/21/2022] Open
Abstract
The computational predictions of 1H NMR chemical shifts for ionic liquids were investigated. To calculate the chemical shifts more accurately, the approach of relative reference standard (RRS) was proposed. This straightforward computational technique uses organic compounds and ionic liquids that are similar to the studied ionic liquids as standards. The calculated chemical shifts of single ion pairs were strongly influenced by the anion type and the local environment. Using the RRS methodology, the calculated results agreed well with the experimental chemical shifts due to the cancellation of errors caused by the anion. Ionic clusters consisting of 4 ion pairs were also employed to model the ionic liquids with strongly coordinating anions. Large clusters slightly improve the accuracy by reducing systematic errors. Although the experimental 1H NMR data of the reference ionic liquid should be used, the RRS methodology has been shown to predict 1H NMR chemical shifts efficiently at different levels of theory. Using an RRS method to calculate the 1H NMR chemical shifts of ionic liquid agreed well with the experimental value.![]()
Collapse
Affiliation(s)
- Juanfang Wang
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Ying Liu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wen Li
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Guanjun Gao
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|
29
|
Ma C, Ou YQ, Chan CTL, Wong AKW, Chan RCT, Chung BPY, Jiang C, Wang ML, Kwok WM. Nonradiative dynamics determined by charge transfer induced hydrogen bonding: a combined femtosecond time-resolved fluorescence and density functional theoretical study of methyl dimethylaminobenzoate in water. Phys Chem Chem Phys 2018; 20:1240-1251. [DOI: 10.1039/c7cp05140a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding with water alters nonradiative pathway of a twisted charge transfer state in methyl dimethylaminobenzoate.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yue-Qun Ou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Ruth Chau-Ting Chan
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Bowie Po-Yee Chung
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Chao Jiang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|