1
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
2
|
Tikhonov DS, Scutelnic V, Sharapa DI, Krotova AA, Dmitrieva AV, Obenchain DA, Schnell M. Structures of the (Imidazole)nH+ ... Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations. Struct Chem 2022. [DOI: 10.1007/s11224-022-02053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractHere, we present new cryogenic infrared spectra of the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. Lett. 501:172–178, 2011) using the same technique but with argon as a tag. Comparison of the two experiments, assisted by theoretical calculations, allowed us to evaluate the preferable attachment positions of argon to the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
frame. Argon attaches to nitrogen-bonded hydrogen in the case of the (Imidazole)H$$^+$$
+
ion, while in (Imidazole)$$_{2}\mathrm{H}^{+}$$
2
H
+
and (Imidazole)$$_{3}\mathrm{H}^{+}$$
3
H
+
the preferred docking sites for the argon are in the center of the complex. This conclusion is supported by analyzing the spectral features attributed to the N–H stretching vibrations. Symmetry adapted perturbation theory (SAPT) analysis of the non-covalent forces between argon and the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) frame revealed that this switch of docking preference with increasing complex size is caused by an interplay between induction and dispersion interactions.
Collapse
|
3
|
Boden P, Strebert PH, Meta M, Dietrich F, Riehn C, Gerhards M. Chromone-methanol clusters in the electronic ground and lowest triplet state: a delicate interplay of non-covalent interactions. Phys Chem Chem Phys 2022; 24:15208-15216. [PMID: 35579075 DOI: 10.1039/d2cp01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromone offers two energetically almost equivalent docking sites for alcohol molecules, in which the hydroxyl group is hydrogen bonded to one of the free electron pairs of the carbonyl O atom. Here, the delicate balance between these two competing arrangements is studied by combining IR/R2PI and UV/IR/UV spectroscopy in a molecular beam supported by quantum-chemical calculations. Most interestingly, chromone undergoes an efficient intersystem crossing into the triplet manifold upon electronic excitation, so that the studies on aromatic molecule-solvent complexes are for the first time extended to such a cluster in a triplet state. As the lowest triplet state (T1) is of ground state character, powerful energy decomposition approaches such as symmetry-adapted perturbation theory (SAPT) and local energy decomposition using the domain-based local pair natural orbital coupled-cluster method (DLPNO-CCSD(T)/LED) are applied. From the theoretical analysis we infer for the T1 state a loss of planarity (puckering) of the 4-pyrone ring of the chromone unit, which considerably affects the interplay between different types of non-covalent interactions at the two possible binding sites.
Collapse
Affiliation(s)
- Pol Boden
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Patrick H Strebert
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Marcel Meta
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Fabian Dietrich
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.,Núcleo Milenio MultiMat & Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile.
| | - Christoph Riehn
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Sajid H, Ullah F, Ayub K, Mahmood T. Cyclic versus straight chain oligofuran as sensor: A detailed DFT study. J Mol Graph Model 2020; 97:107569. [PMID: 32120236 DOI: 10.1016/j.jmgm.2020.107569] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
This study presents a novel approach for exploring the sensitivity and selectivity of cyclic oligofuran (5/6/7CF) toward gaseous analytes and their comparison with straight chain analogues (5/6/7SF). The work is not only vital to understand the superior sensitivity but also for rational design of new sensors based on cyclic ring structures of oligofuran. Interaction of cyclic and straight chain oligofuran with NH3, CO, CO2, N2H4, HCN, H2O2, H2S, CH4, CH3OH, SO2, SO3 and H2O analytes is studied via DFT calculation at B3LYP-D3/6-31++G (d, p) level of theory. The sensitivity and selectivity are illustrated by the thermodynamic parameters (Ebind, SAPT0 energies, NCI analysis), electronic properties (H-L gap, percentage of average energy gap, CHELPG charge transfer, DOS spectra), and UV-Vis analysis. All these properties are simulated at B3LYP/6-31G (d) level of theory while UV-Vis is calculated at TD-DFT method. Cyclic oligofurans have high binding energies with analytes compared to 5/6/7SF which corresponds to higher sensitivity of 5/6/7CF. Furthermore, the cyclization of oligofuran significantly improves the sensitivity and selectivity of the system. Alteration in electronic properties of 5/6/7CF and 5/6/7SF is remarkably high upon complexation with SO2 and SO3. Further the stability of rings (5, 6 and 7 membered cyclic oligofurans) and their SO3 complexes is also confirmed by molecular dynamics calculations. The findings of the work clearly suggest that the cyclic geometry enhances not only sensitivity but also selectivity of conducting polymers (oligofuran).
Collapse
Affiliation(s)
- Hasnain Sajid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Faizan Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
5
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
6
|
Fatima M, Maué D, Pérez C, Tikhonov DS, Bernhard D, Stamm A, Medcraft C, Gerhards M, Schnell M. Structures and internal dynamics of diphenylether and its aggregates with water. Phys Chem Chem Phys 2020; 22:27966-27978. [DOI: 10.1039/d0cp04104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on a detailed multi-spectroscopic analysis of the structures and internal dynamics of diphenylether and its aggregates with up to three water molecules by employing molecular beam experiments.
Collapse
Affiliation(s)
- M. Fatima
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. Maué
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - C. Pérez
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. S. Tikhonov
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. Bernhard
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - A. Stamm
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - C. Medcraft
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. Gerhards
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - M. Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| |
Collapse
|
7
|
Wang L, Zhang S, Wang Y, Zhang B. Dispersion-induced structural preference in the ultrafast dynamics of diphenyl ether. RSC Adv 2020; 10:18093-18098. [PMID: 35517230 PMCID: PMC9053750 DOI: 10.1039/d0ra02224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces. The structural preference induced by dispersion interactions is demonstrated to influence the excited state dynamics of diphenyl ether (DPE) using femtosecond time-resolved transient absorption (TA) associated with quantum chemical calculations. The experimental results in aprotic solvents show that the S1 state is populated upon irradiation at 267 nm with excess vibrational energy dissipating to solvent molecules in several picoseconds, and then decays via internal conversion (IC) within 50 ps as well as intersystem crossing (ISC) and fluorescence with a lifetime of nanoseconds. The polarity of the solvent disturbs the excited state energies and enhances the energy barriers of the ISC channel. Furthermore, the intermolecular dispersion interactions with protic solvents result in the OH–π isomer dominating in methanol and the OH–O isomer is slightly preferred in t-butanol in the ground state. The hydrogen bonded isomer measurements show an additional change from OH–O to OH–π geometry in the first 1 ps besides the relaxation processes in aprotic solvents. The time constants measured in the TA spectra suggest that the OH–O isomer facilitates IC. The results show that the OH–π isomer has a more rigid structure and a higher barrier for IC, making it harder to reach the geometric conical intersection through conformer rearrangement. This work enables us to have a good knowledge of how the structural preference induced by dispersion interactions affects excited state dynamics of the heteroaromatic compounds. Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces.![]()
Collapse
Affiliation(s)
- Lian Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| |
Collapse
|
8
|
Hartwig B, Lange M, Poblotzki A, Medel R, Zehnacker A, Suhm MA. The reduced cohesion of homoconfigurational 1,2-diols. Phys Chem Chem Phys 2020; 22:1122-1136. [DOI: 10.1039/c9cp04943f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homochiral encounters of vicinal diols are blocked from relaxing to the heterochiral global minimum dimer structure in supersonic jet expansions.
Collapse
Affiliation(s)
- Beppo Hartwig
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Manuel Lange
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Anja Poblotzki
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Robert Medel
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay
- CNRS
- Université Paris-Sud
- Université Paris-Saclay
- Orsay
| | - Martin A. Suhm
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| |
Collapse
|
9
|
Bernhard D, Fatima M, Poblotzki A, Steber AL, Pérez C, Suhm MA, Schnell M, Gerhards M. Dispersion-controlled docking preference: multi-spectroscopic study on complexes of dibenzofuran with alcohols and water. Phys Chem Chem Phys 2019; 21:16032-16046. [DOI: 10.1039/c9cp02635e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The planarity and rigidity of dibenzofuran inverts the docking preference for increasingly bulky R-OH solvent molecules, compared to the closely related diphenyl ether. Now, London dispersion favors OH⋯π hydrogen bonding.
Collapse
Affiliation(s)
- D. Bernhard
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - M. Fatima
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - A. Poblotzki
- Institut für Physikalische Chemie
- Universität Göttingen
- D-37077 Göttingen
- Germany
| | - A. L. Steber
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - C. Pérez
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. A. Suhm
- Institut für Physikalische Chemie
- Universität Göttingen
- D-37077 Göttingen
- Germany
| | - M. Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- Notkestr. 85
- D-22607 Hamburg
- Germany & Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. Gerhards
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| |
Collapse
|
10
|
Sajid H, Ayub K, Mahmood T. A comprehensive DFT study on the sensing abilities of cyclic oligothiophenes (nCTs). NEW J CHEM 2019. [DOI: 10.1039/c9nj01894h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear conducting polymers are extensively studied as sensors for various analytes, whereas studies on cyclic analogues are limited.
Collapse
Affiliation(s)
- Hasnain Sajid
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Khurshid Ayub
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Tariq Mahmood
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| |
Collapse
|
11
|
Bernhard D, Dietrich F, Fatima M, Pérez C, Gottschalk HC, Wuttke A, Mata RA, Suhm MA, Schnell M, Gerhards M. The phenyl vinyl ether-methanol complex: a model system for quantum chemistry benchmarking. Beilstein J Org Chem 2018; 14:1642-1654. [PMID: 30013690 PMCID: PMC6036964 DOI: 10.3762/bjoc.14.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/02/2018] [Indexed: 11/23/2022] Open
Abstract
The structure of the isolated aggregate of phenyl vinyl ether and methanol is studied by combining a multi-spectroscopic approach and quantum-chemical calculations in order to investigate the delicate interplay of noncovalent interactions. The complementary results of vibrational and rotational spectroscopy applied in molecular beam experiments reveal the preference of a hydrogen bond of the methanol towards the ether oxygen (OH∙∙∙O) over the π-docking motifs via the phenyl and vinyl moieties, with an additional less populated OH∙∙∙P(phenyl)-bound isomer detected only by microwave spectroscopy. The correct prediction of the energetic order of the isomers using quantum-chemical calculations turns out to be challenging and succeeds with a sophisticated local coupled cluster method. The latter also yields a quantification as well as a visualization of London dispersion, which prove to be valuable tools for understanding the role of dispersion on the docking preferences. Beyond the structural analysis of the electronic ground state (S0), the electronically excited (S1) state is analyzed, in which a destabilization of the OH∙∙∙O structure compared to the S0 state is observed experimentally and theoretically.
Collapse
Affiliation(s)
- Dominic Bernhard
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Fabian Dietrich
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Mariyam Fatima
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Cristóbal Pérez
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Hannes C Gottschalk
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Axel Wuttke
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Martin A Suhm
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Melanie Schnell
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 1, D-24118 Kiel, Germany
| | - Markus Gerhards
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Dietrich F, Bernhard D, Fatima M, Pérez C, Schnell M, Gerhards M. The Effect of Dispersion on the Structure of Diphenyl Ether Aggregates. Angew Chem Int Ed Engl 2018; 57:9534-9537. [DOI: 10.1002/anie.201801842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Dietrich
- Fachbereich Chemie and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| | - Dominic Bernhard
- Fachbereich Chemie and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| | - Mariyam Fatima
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestrasse 85 22607 Hamburg Germany
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestrasse 85 22607 Hamburg Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestrasse 85 22607 Hamburg Germany
- Christian-Albrechts-Universität zu Kiel; Institut für Physikalische Chemie; Max-Eyth-Strasse 1 24118 Kiel Germany
| | - Markus Gerhards
- Fachbereich Chemie and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| |
Collapse
|
13
|
Dietrich F, Bernhard D, Fatima M, Pérez C, Schnell M, Gerhards M. Der Effekt von Dispersionswechselwirkungen auf die Struktur von Diphenylether-Aggregaten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabian Dietrich
- Fachbereich Chemie und Forschungszentrum Optimas; TU Kaiserslautern; Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Deutschland
| | - Dominic Bernhard
- Fachbereich Chemie und Forschungszentrum Optimas; TU Kaiserslautern; Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Deutschland
| | - Mariyam Fatima
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestraße 85 22607 Hamburg Deutschland
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestraße 85 22607 Hamburg Deutschland
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY); Max-Planck-Institut für Struktur und Dynamik der Materie; Notkestraße 85 22607 Hamburg Deutschland
- Christian-Albrechts-Universität zu Kiel; Institut für Physikalische Chemie; Max-Eyth-Straße 1 24118 Kiel Deutschland
| | - Markus Gerhards
- Fachbereich Chemie und Forschungszentrum Optimas; TU Kaiserslautern; Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Deutschland
| |
Collapse
|
14
|
Bernhard D, Holzer C, Dietrich F, Stamm A, Klopper W, Gerhards M. The Structure of Diphenyl Ether-Methanol in the Electronically Excited and Ionic Ground States: A Combined IR/UV Spectroscopic and Theoretical Study. Chemphyschem 2017; 18:3634-3641. [PMID: 29024275 DOI: 10.1002/cphc.201700722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/24/2017] [Indexed: 11/06/2022]
Abstract
Diphenyl ether offers competing docking sites for methanol: the ether oxygen acts as a common hydrogen-bond acceptor and the π system of each phenyl ring allows for OH-π interactions driven by electrostatic, induction, and dispersion forces. Based on investigations in the electronic ground state (S0 ), we present a detailed study of the electronically excited state (S1 ) and the ionic ground state (D0 ), in which an impact on the structural preference is expected compared with the S0 state. Dispersion forces in the electronically excited state were analyzed by comparing the computed binding energies at the coupled-cluster-singles (CCS) and approximate coupled-cluster-singles-doubles levels of theory (CC2 approximation). By applying UV/IR/UV spectroscopy, we found a more strongly bound OH-π structure in the S1 state compared with the S0 state, in agreement with spin-component-scaled CC2 calculations. A structural rearrangement into a non-hydrogen-bonded structure takes places upon ionization in the D0 state, which was revealed by using IR photodissociation spectroscopy and confirmed by theory.
Collapse
Affiliation(s)
- Dominic Bernhard
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Christof Holzer
- Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für Technologie, KIT, Fritz-Haber-Weg 2, D-76131, Karlsruhe, Germany
| | - Fabian Dietrich
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Anke Stamm
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Wim Klopper
- Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für Technologie, KIT, Fritz-Haber-Weg 2, D-76131, Karlsruhe, Germany
| | - Markus Gerhards
- Fachbereich Chemie and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| |
Collapse
|