1
|
Wu Y, Hu J, Du Y, Lu G, Li Y, Feng Y, Chen L, Tu Y, Xiang M, Gui Y, Shu T, Yu L. Mechanistic Insights into the Halophilic Xylosidase Xylo-1 and Its Role in Xylose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15375-15387. [PMID: 37773011 DOI: 10.1021/acs.jafc.3c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The Xylo-1 xylosidase, which belongs to the GH43 family, exhibits a high salt tolerance. The present study demonstrated that the catalytic activity of Xylo-1 increased by 195% in the presence of 5 M NaCl. Additionally, the half-life of Xylo-1 increased 25.9-fold in the presence of 1 M NaCl. Through comprehensive analysis including circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations, we elucidated that the presence of Na+ ions increased the contact frequency between the surface acidic amino acids and the surrounding water molecules. This resulted in the stabilization of the surrounding hydration layer of Xylo-1. Additionally, Na+ ions also stabilized the substrate-binding conformation and the fluctuation of water molecules within the active site, which enhanced the catalytic activity of Xylo-1 by increasing the nucleophilic attack by the water molecules. Ultimately, the optimal reaction conditions for the production of xylose by synergistic catalysis with Xylo-1 and xylanase were determined. The results demonstrated that the conversion yield of the method was high for various sources of xylan, indicating the method could have potential industrial applications. This study explored the structure-activity relationship of catalysis in Xylo-1 under high-salt conditions, provides novel insights into the mechanism of halophilic enzymes, and serves as a reference for the industrial application of Xylo-1.
Collapse
Affiliation(s)
- Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiayue Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yikai Du
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Gen Lu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yujia Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liting Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuhao Tu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Mengxiong Xiang
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yifan Gui
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Tong Shu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
2
|
El Harrar T, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Comput Struct Biotechnol J 2022; 20:399-409. [PMID: 35070165 PMCID: PMC8752993 DOI: 10.1016/j.csbj.2021.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author at: John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany.
| |
Collapse
|
3
|
Uca M, Eksin E, Erac Y, Erdem A. Electrochemical Investigation of Curcumin-DNA Interaction by Using Hydroxyapatite Nanoparticles-Ionic Liquids Based Composite Electrodes. MATERIALS 2021; 14:ma14154344. [PMID: 34361538 PMCID: PMC8347690 DOI: 10.3390/ma14154344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.
Collapse
Affiliation(s)
- Merve Uca
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Ece Eksin
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Yasemin Erac
- Pharmacology Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Arzum Erdem
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
- Correspondence: or
| |
Collapse
|
4
|
El Harrar T, Frieg B, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Comput Struct Biotechnol J 2021; 19:4248-4264. [PMID: 34429845 PMCID: PMC8355836 DOI: 10.1016/j.csbj.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Benedikt Frieg
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Sci Rep 2019; 9:8437. [PMID: 31186454 PMCID: PMC6560132 DOI: 10.1038/s41598-019-44805-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
The 25 human bitter taste receptors (hTAS2Rs) are responsible for detecting bitter molecules present in food, and they also play several physiological and pathological roles in extraoral compartments. Therefore, understanding their ligand specificity is important both for food research and for pharmacological applications. Here we provide a molecular insight into the exquisite molecular recognition of bitter β-glycopyranosides by one of the members of this receptor subclass, hTAS2R16. Most of its agonists have in common the presence of a β-glycopyranose unit along with an extremely structurally diverse aglycon moiety. This poses the question of how hTAS2R16 can recognize such a large number of "bitter sugars". By means of hybrid molecular mechanics/coarse grained molecular dynamics simulations, here we show that the three hTAS2R16 agonists salicin, arbutin and phenyl-β-D-glucopyranoside interact with the receptor through a previously unrecognized dual binding mode. Such mechanism may offer a seamless way to fit different aglycons inside the binding cavity, while maintaining the sugar bound, similar to the strategy used by several carbohydrate-binding lectins. Our prediction is validated a posteriori by comparison with mutagenesis data and also rationalizes a wealth of structure-activity relationship data. Therefore, our findings not only provide a deeper molecular characterization of the binding determinants for the three ligands studied here, but also give insights applicable to other hTAS2R16 agonists. Together with our results for other hTAS2Rs, this study paves the way to improve our overall understanding of the structural determinants of ligand specificity in bitter taste receptors.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Schindl A, Hagen ML, Muzammal S, Gunasekera HAD, Croft AK. Proteins in Ionic Liquids: Reactions, Applications, and Futures. Front Chem 2019; 7:347. [PMID: 31179267 PMCID: PMC6543490 DOI: 10.3389/fchem.2019.00347] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Biopolymer processing and handling is greatly facilitated by the use of ionic liquids, given the increased solubility, and in some cases, structural stability imparted to these molecules. Focussing on proteins, we highlight here not just the key drivers behind protein-ionic liquid interactions that facilitate these functionalities, but address relevant current and potential applications of protein-ionic liquid interactions, including areas of future interest.
Collapse
Affiliation(s)
- Alexandra Schindl
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine & Health Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Faculty of Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthew L. Hagen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Shafaq Muzammal
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Henadira A. D. Gunasekera
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Anna K. Croft
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
Carter EE, Heyert AJ, De Souza M, Baker JL, Lindberg GE. The ionic liquid [C4mpy][Tf2N] induces bound-like structure in the intrinsically disordered protein FlgM. Phys Chem Chem Phys 2019; 21:17950-17958. [DOI: 10.1039/c9cp01882d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide is shown to induce secondary structure similar to a bioactive state in the protein FlgM.
Collapse
Affiliation(s)
- Erin E. Carter
- Department of Chemistry and Biochemistry
- Northern Arizona University
- Flagstaff
- USA
| | | | | | | | - Gerrick E. Lindberg
- Department of Chemistry and Biochemistry
- Northern Arizona University
- Flagstaff
- USA
- Center for Materials Interfaces in Research and Applications
| |
Collapse
|
8
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Xia X, Wan R, Wang P, Huo W, Dong H, Du Q. Toxicity of imidazoles ionic liquid [C 16mim]Cl to Hela cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:408-414. [PMID: 30015186 DOI: 10.1016/j.ecoenv.2018.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Our study aimed to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) on the human cervical carcinoma (Hela) cells. We evaluated toxicity, cell viability, genotoxicity, oxidative stress, apoptosis, and apoptosis-related gene expression in Hela cells following exposure to [C16min]Cl. The results indicated that [C16min]Cl inhibited the growth of Hela cells, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, as well as increased the cellular malondialdehyde level of Hela cells. Moreover, [C16min]Cl induced changes in the transcription of p53, Bax and Bcl-2, suggesting that the p53 and Bcl-2 family might have been involved in the cytotoxicity and apoptosis induced by [C16min]Cl in Hela cells. Taken together, these results revealed that [C16min]Cl imparts oxidative stress, genotoxicity, and induces apoptosis in Hela cells; hence, it is not a green solvent.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
10
|
Lim GS, Klähn M. On the Stability of Proteins Solvated in Imidazolium-Based Ionic Liquids Studied with Replica Exchange Molecular Dynamics. J Phys Chem B 2018; 122:9274-9288. [DOI: 10.1021/acs.jpcb.8b06452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geraldine S. Lim
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632, Republic of Singapore
| | - Marco Klähn
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
11
|
Ren L, Yu D, Wang Y, Shen L, Zhang J, Wang Y, Fang X. Inhibiting effects of common trivalent metal ions on transmembrane-type 2 matrix metalloproteinase. Int J Biol Macromol 2018; 119:683-691. [PMID: 30048727 DOI: 10.1016/j.ijbiomac.2018.07.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 11/29/2022]
Abstract
Transmembrane-type 2 matrix metalloproteinase (MT2-MMP) degrades connective extracellular matrix between cells and enables tumor cells to migrate and metastasize, making this substance a potential therapeutic target in various diseases. In this work, the interactions between MT2-MMP and common trivalent metal ions, including aluminum (Al3+) and ferrum (Fe3+) ions, were investigated. Enzymatic detection revealed that Al3+ and Fe3+ strongly inhibited the MT2-MMP. Fluorescence spectrography elucidated a static quenching interaction between the negatively charged amino acids on MT2-MMP and the inhibitory trivalent metal ions, indicating that a stable complex was formed between MT2-MMP and metal ions. In addition, fluorescence data and molecular modeling analysis of the binding characteristics revealed that one trivalent metal ion bound with a protein in the stable complex formation process. The potential inhibitory effect of Al3+ on MT2-MMP was further examined in an MT2-MMP-overexpressed cell line, HT1080, by using flow cytometry. As a result, Al3+ can promote HT1080 cell apoptosis in a micromolar concentration-dependent manner. This work illustrated that common trivalent metal ions can potentially inhibit MT2-MMP-related tumors.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Street, Changchun, Jilin 130062, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yanyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liqiao Shen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jinrui Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ye Wang
- School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, PR China.
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
12
|
Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron 2018; 103:104-112. [DOI: 10.1016/j.bios.2017.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
|
13
|
Sun X, Zhu W, Matyjaszewski K. Protection of opening lids: very high catalytic activity of lipase immobilized on core-shell nanoparticles. Macromolecules 2018; 51:289-296. [PMID: 29983451 PMCID: PMC6029252 DOI: 10.1021/acs.macromol.7b02361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Various hydrophobic supports have been used for lipase immobilization since the active site of lipase can be opened in a hydrophobic environment. Nevertheless, the increase of lipase activity is still limited. This study demonstrates a hyperactivation-protection strategy of lipase after immobilization on poly(n-butyl acrylate)-polyaldehyde dextran (PBA-PAD) core-shell nanoparticles. The inner hydrophobic PBA domain helps to rearrange lipase conformation to a more active form after immobilization into the PAD shell. More importantly, the outer PAD shell with dense polysaccharide chains prevents the immobilized lipase from contact with outside aqueous medium and revert its conformation back to an inactive form. As a result, under optimal conditions the activity of lipase immobilized in PBA-PAD nanoparticles was enhanced 40 times over the free one, much higher than in any previous report. Furthermore, the immobilized lipase retained more than 80 % of its activity after 10 reaction cycles.
Collapse
Affiliation(s)
- Xuefei Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Zhao J, Frauenkron-Machedjou VJ, Fulton A, Zhu L, Davari MD, Jaeger KE, Schwaneberg U, Bocola M. Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:9600-9609. [DOI: 10.1039/c7cp08470f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key properties affecting lipase resistance towards an ionic liquid are uncovered through a molecular dynamics study.
Collapse
Affiliation(s)
- Jing Zhao
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Tianjin Institute of Industrial Biotechnology
| | | | - Alexander Fulton
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52426 Jülich
- Germany
| | - Leilei Zhu
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Tianjin Institute of Industrial Biotechnology
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52426 Jülich
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| | - Marco Bocola
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|