1
|
Kim J, Woo KC, Kim KK, Kang M, Kim SK. Tunneling dynamics dictated by the multidimensional conical intersection seam in the πσ*‐mediated photochemistry of heteroaromatic molecules. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST Daejeon Republic of Korea
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Kuk Ki Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Minseok Kang
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| |
Collapse
|
2
|
Kim J, Woo KC, Kim SK. Femtosecond Wavepacket Dynamics Reveals the Molecular Structures in the Excited (S 1) and Cationic (D 0) States. J Phys Chem A 2021; 125:6629-6635. [PMID: 34310149 DOI: 10.1021/acs.jpca.1c04976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular structures in the electronically excited (S1) and cationic (D0) states of 2-fluorothioanisole (2-FTA) have been precisely refined from the real-time dynamics of the femtosecond (fs) wavepacket prepared by the coherent excitation of the Franck-Condon active out-of-plane torsional modes in the S1 ← S0 transition at 285 nm. The simulation to reproduce the experiment in terms of the beating frequencies gives the nonplanar geometry of 2-FTA in S1, where the out-of-plane dihedral angle (φ) of the S-CH3 moiety is 51° with respect to the molecular plane. The behavior of the fs wavepacket in terms of the amplitudes and phases with the change of the probe (ionization) wavelength (λprobe = 300-330 nm) provides the otherwise veiled structure of the cationic D0 state. While the 2-FTA cation adopts the planar geometry (φ = 0°) at the global minimum, it is found to have a vertical minimum at φ ≈ 135° from the perspective of the D0 ← S1 vertical transition. Ab initio calculations support the experiment quite well although the simulation using the model potentials could improve the match with the experiment, giving the new interpretation for the previously disputed photoelectron spectroscopic results.
Collapse
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Lee H, Kim SY, Lim JS, Kim J, Kim SK. Conformer Specific Excited-State Structure of 3-Methylthioanisole. J Phys Chem A 2020; 124:4666-4671. [PMID: 32401512 DOI: 10.1021/acs.jpca.0c03452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trans and cis conformers of 3-methylthioanisole have been spectroscopically investigated to reveal the conformer specific structural changes upon the S1(ππ*)-S0 excitation. The conformational cooling during the supersonic expansion is found to be quite efficient in the Ar carrier gas giving the trans conformational isomer exclusively in the molecular beam, whereas both trans and cis conformers are populated in the jet when the sample is carried in Ne. Using the Stark deflector, trans and cis conformers are unambiguously identified, showing the distinct Stark deflection profiles according to their sufficiently different dipole moments of 1.013 or 1.670 D, respectively. For the trans conformer, the methyl moiety on the meta-position adopting the eclipsed geometry in S0 transforms into the staggered geometry in S1 to activate a series of the CH3 torsional mode. A Hamiltonian with the one-dimensional sinusoidal torsional potential is solved using the free-rotor basis set to explain the experiment, giving the 3-fold torsional barrier of 34 and 304 cm-1 for S0 and S1, respectively. For the cis conformer, on the other hand, the CH3 torsion is little activated in the S1-S0 transition as both S0 and S1 adopt the staggered geometry at the minimum energy points. The doublet of each band of the cis conformer is ascribed to tunneling split due to the very low CH3 torsional barrier of 27 cm-1 in S0. It is found that the cis conformer undergoes a planar to pseudoplanar structural change upon the S1-S0 transition. Theoretical calculation based on the double-well model potential curve could explain the experiment quite well, suggesting that the SCH3 moiety of the cis conformer in S1 becomes out-of-plane with respect to the plane of the phenyl moiety. This implies that excited-state predissociation dynamics of trans and cis conformers of the title molecule might be different.
Collapse
Affiliation(s)
- Heesung Lee
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - So-Yeon Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Junggil Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Lee H, Kim SY, Kim SK. Multidimensional characterization of the conical intersection seam in the normal mode space. Chem Sci 2020; 11:6856-6861. [PMID: 33033600 PMCID: PMC7504900 DOI: 10.1039/d0sc02045a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Multidimensional conical intersection seam has been characterized by utilizing the dynamic resonances in the nonadiabatic transition probability experimentally observed in the predissociation of thioanisole isotopomers.
Collapse
Affiliation(s)
- Heesung Lee
- Department of Chemistry
- KAIST
- Daejeon 34141
- Republic of Korea
| | | | - Sang Kyu Kim
- Department of Chemistry
- KAIST
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
5
|
Lim JS, You HS, Kim SY, Kim J, Park YC, Kim SK. Vibronic structure and predissociation dynamics of 2-methoxythiophenol (S 1): The effect of intramolecular hydrogen bonding on nonadiabatic dynamics. J Chem Phys 2019; 151:244305. [PMID: 31893886 DOI: 10.1063/1.5134519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vibronic spectroscopy and the S-H bond predissociation dynamics of 2-methoxythiophenol (2-MTP) in the S1 (ππ*) state have been investigated for the first time. Resonant two-photon ionization and slow-electron velocity map imaging (SEVI) spectroscopies have revealed that the S1-S0 transition of 2-MTP is accompanied with the planar to the pseudoplanar structural change along the out-of-plane ring distortion and the tilt of the methoxy moiety. The S1 vibronic bands up to their internal energy of ∼1000 cm-1 are assigned from the SEVI spectra taken via various S1 vibronic intermediate states with the aid of ab initio calculations. Intriguingly, Fermi resonances have been identified for some vibronic bands. The S-H bond breakage of 2-MTP occurs via tunneling through an adiabatic barrier under the S1/S2 conical intersection seam, and it is followed by the bifurcation into either the adiabatic or nonadiabatic channel at the S0/S2 conical intersection where the diabatic S2 state (πσ*) is unbound with respect to the S-H bond elongation coordinate, giving the excited (Ã) or ground (X̃) state of the 2-methoxythiophenoxy radical, respectively. Surprisingly, the nonadiabatic transition probability at the S0/S2 conical intersection, estimated from the velocity map ion images of the nascent D fragment from 2-MTP-d1 (2-CH3O-C6H4SD) at the S1 zero-point energy level, is found to be exceptionally high to give the X̃/Ã product branching ratio of 2.03 ± 0.20, which is much higher than the value of ∼0.8 estimated for the bare thiophenol at the S1 origin. It even increases to 2.33 ± 0.17 at the ν45 2 mode (101 cm-1) before it rapidly decays to 0.69 ± 0.05 at the S1 internal energy of about 2200 cm-1. This suggests that the strong intramolecular hydrogen bonding of S⋯D⋯OCH3 in 2-MTP at least in the low S1 internal energy region should play a significant role in localizing the reactive flux onto the conical intersection seam. The minimum energy pathway calculations (second-order coupled-cluster resolution of the identity or time-dependent-density functional theory) of the adiabatic S1 state suggest that the intimate dynamic interplay between the S-H bond cleavage and intramolecular hydrogen bonding could be crucial in the nonadiabatic surface hopping dynamics taking place at the conical intersection.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - So-Yeon Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Junggil Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | | | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
6
|
Lim JS, You HS, Han S, Kim SK. Photodissociation Dynamics of Ortho-Substituted Thiophenols at 243 nm. J Phys Chem A 2019; 123:2634-2639. [DOI: 10.1021/acs.jpca.9b00803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Songhee Han
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Lim JS, You HS, Kim SY, Kim SK. Experimental observation of nonadiabatic bifurcation dynamics at resonances in the continuum. Chem Sci 2019; 10:2404-2412. [PMID: 30881669 PMCID: PMC6385646 DOI: 10.1039/c8sc04859b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
The surface crossing of bound and unbound electronic states in multidimensional space often gives rise to resonances in the continuum. This situation happens in the πσ*-mediated photodissociation reaction of 2-fluorothioanisole; optically-bright bound S1 (ππ*) vibrational states of 2-fluorothioanisole are strongly coupled to the optically-dark S2 (πσ*) state, which is repulsive along the S-CH3 elongation coordinate. It is revealed here that the reactive flux prepared at such resonances in the continuum bifurcates into two distinct reaction pathways with totally different dynamics in terms of energy disposal and nonadiabatic transition probability. This indicates that the reactive flux in the Franck-Condon region may either undergo nonadiabatic transition funneling through the conical intersection from the upper adiabat, or follow a low-lying adiabatic path, along which multiple dynamic saddle points may be located. Since 2-fluorothioanisole adopts a nonplanar geometry in the S1 minimum energy, the quasi-degenerate S1/S2 crossing seam in the nonplanar geometry, which lies well below the planar S1/S2 conical intersection, is likely responsible for the efficient vibronic coupling, especially in the low S1 internal energy region. As the excitation energy increases, bound-to-continuum coupling is facilitated with the aid of intramolecular vibrational redistribution, along many degrees of freedom spanning the large structural volume. This leads to the rapid domination of the continuum character of the reactive flux. This work reports direct and robust experimental observations of the nonadiabatic bifurcation dynamics of the reactive flux occurring at resonances in the continuum of polyatomic molecules.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Hyun Sik You
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - So-Yeon Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Sang Kyu Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
8
|
You HS, Kim J, Han S, Ahn DS, Lim JS, Kim SK. Spatial Isolation of Conformational Isomers of Hydroquinone and Its Water Cluster Using the Stark Deflector. J Phys Chem A 2018; 122:1194-1199. [PMID: 29337558 DOI: 10.1021/acs.jpca.7b10431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational isomers of hydroquinone and their 1:1 clusters with water have been spatially separated using a Stark deflector in a supersonic jet. trans-Hydroquinone (HyQ) conformer with zero dipole moment is little influenced by inhomogeneous electric fields, whereas cis conformer with nonzero dipole moment (2.38 D) is significantly deflected from the molecular beam axis into the direction along which the strong field gradient is applied. Resonant two photon ionization carried out by shifting the laser position perpendicular to the molecular beam axis after the Stark deflector then gives an exclusive S1-S0 excitation spectrum of the cis conformer only, making possible immaculate conformer-specific spectroscopy and dynamics. As the spatial separation is apparently proportional to the effective dipole moment strength, conformational assignment could be absolute in the Stark deflector, which contrasts with the hole-burning spectroscopic technique where identification of a conformational isomer is intrinsically not unambiguous. trans- and cis-HyQ-H2O clusters have also been spatially separated according to their distinct effective dipole moment strengths to give absolute spectroscopic identification of each cluster isomer, nailing down the otherwise disputable conformational assignment. This is the first report for the spatial separation of conformational cluster isomers.
Collapse
Affiliation(s)
- Hyun Sik You
- Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Junggil Kim
- Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Songhee Han
- Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Jean Sun Lim
- Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Woo KC, Kang DH, Kim SK. Real-Time Observation of Nonadiabatic Bifurcation Dynamics at a Conical Intersection. J Am Chem Soc 2017; 139:17152-17158. [DOI: 10.1021/jacs.7b09677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|