1
|
Chung HS. Characterizing heterogeneity in amyloid formation processes. Curr Opin Struct Biol 2024; 89:102951. [PMID: 39566372 PMCID: PMC11602362 DOI: 10.1016/j.sbi.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Protein aggregation is a complex process, consisting of a large number of pathways connecting monomers and mature amyloid fibrils. Recent advances in structure determination techniques, such as solid-state NMR and cryoEM, have allowed the determination of atomic resolution structures of fibril polymorphs, but most of the intermediate stages of the process including oligomer formation remain unknown. Proper characterization of the heterogeneity of the process is critical not only for physical and chemical understanding of the aggregation process but also for elucidation of the disease mechanisms and identification of therapeutic targets. This article reviews recent developments in the characterization of heterogeneity in amyloid formation processes.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
2
|
Yagi-Utsumi M, Kanaoka Y, Miyajima S, Itoh SG, Yanagisawa K, Okumura H, Uchihashi T, Kato K. Single-Molecule Kinetic Observation of Antibody Interactions with Growing Amyloid β Fibrils. J Am Chem Soc 2024; 146:31518-31528. [PMID: 39445702 PMCID: PMC11583206 DOI: 10.1021/jacs.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Understanding the dynamic assembly process of amyloid β (Aβ) during fibril formation is essential for developing effective therapeutic strategies against Alzheimer's disease. Here, we employed high-speed atomic force microscopy to observe the growth of Aβ fibrils at the single-molecule level, focusing specifically on their interaction with anti-Aβ antibodies. Our findings show that fibril growth consists of intermittent periods of elongation and pausing, which are dictated by the alternating addition of Aβ monomers to protofilaments. We highlight the distinctive interaction of antibody 4396C, which specifically binds to the fibril ends in the paused state, suggesting a unique mechanism to hinder fibril elongation. Through real-time visualization of fibril growth and antibody interactions combined with molecular simulation, this study provides a refined understanding of Aβ assembly during fibril formation and suggests novel strategies for Alzheimer's therapy aimed at inhibiting the fibril elongation.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shogo Miyajima
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Katsuhiko Yanagisawa
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-0814, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Meng F, Kim JY, Louis JM, Chung HS. Single-Molecule Characterization of Heterogeneous Oligomer Formation during Co-Aggregation of 40- and 42-Residue Amyloid-β. J Am Chem Soc 2024; 146:24426-24439. [PMID: 39177153 DOI: 10.1021/jacs.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
4
|
Watkins L, Mukherjee S, Tithof J. Dynamics of waste proteins in brain tissue: Numerical insights into Alzheimer's risk factors. Phys Rev E 2024; 110:034401. [PMID: 39425375 DOI: 10.1103/physreve.110.034401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/14/2024] [Indexed: 10/21/2024]
Abstract
Over the past few decades, research has indicated that the buildup of waste proteins, like amyloid-β (Aβ), in the brain's interstitial spaces is linked to neurodegenerative diseases like Alzheimer's, but the details of how such proteins are removed from the brain are not well understood. We have developed a numerical model to investigate the aggregation and clearance mechanisms of Aβ in the interstitial spaces of the brain. The model describes the volume-averaged transport of Aβ in a segment of the brain interstitium modeled as a porous medium, oriented between the perivascular space (fluid-filled channel surrounding a blood vessel) of a penetrating arteriole and that of a venule. Our numerical approach solves N coupled advection-diffusion-aggregation equations that model the production, aggregation, fragmentation, and clearance of N species of Aβ. We simulate N=50 species to investigate the oligomer-size dependence of clearance and aggregation. We introduce a timescale plot that helps predict Aβ buildup for different neurological conditions. We show that a sudden increase in monomer concentration, as occurs in conditions like traumatic brain injury, leads to significant plaque formation, which can qualitatively be predicted using the timescale plot. Our results also indicate that impaired protein clearance (as occurs with aging) and fragmentation are both mechanisms that sustain large intermediate oligomer concentrations. Our results provide novel insight into several known risk factors for Alzheimer's disease and cognitive decline, and we introduce a unique framing of Aβ dynamics as a competition between different timescales associated with production rates, aggregation rates, and clearance conditions.
Collapse
|
5
|
Chitty C, Kuliga K, Xue WF. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies. Biochem Soc Trans 2024; 52:761-771. [PMID: 38600027 DOI: 10.1042/bst20230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.
Collapse
Affiliation(s)
- Claudia Chitty
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Kinga Kuliga
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Wei-Feng Xue
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| |
Collapse
|
6
|
Nilsson BL, Celebi Torabfam G, Dias CL. Peptide Self-Assembly into Amyloid Fibrils: Unbiased All-Atom Simulations. J Phys Chem B 2024; 128:3320-3328. [PMID: 38447080 PMCID: PMC11466223 DOI: 10.1021/acs.jpcb.3c07861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Protein self-assembly plays an important role in biological systems, accounting for the formation of mesoscopic structures that can be highly symmetric as in the capsid of viruses or disordered as in molecular condensates or exhibit a one-dimensional fibrillar morphology as in amyloid fibrils. Deposits of the latter in tissues of individuals with degenerative diseases like Alzheimer's and Parkinson's has motivated extensive efforts to understand the sequence of molecular events accounting for their formation. These studies aim to identify on-pathway intermediates that may be the targets for therapeutic intervention. This detailed knowledge of fibril formation remains obscure, in part due to challenges with experimental analyses of these processes. However, important progress is being achieved for short amyloid peptides due to advances in our ability to perform completely unbiased all-atom simulations of the self-assembly process. This perspective discusses recent developments, their implications, and the hurdles that still need to be overcome to further advance the field.
Collapse
Affiliation(s)
- Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627-0216, United States
| | - Gizem Celebi Torabfam
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
7
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
8
|
Sasanian N, Sharma R, Lubart Q, Kk S, Ghaeidamini M, Dorfman KD, Esbjörner EK, Westerlund F. Probing physical properties of single amyloid fibrils using nanofluidic channels. NANOSCALE 2023; 15:18737-18744. [PMID: 37953701 DOI: 10.1039/d3nr02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Amyloid fibril formation is central to the pathology of many diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Amyloid fibrils can also have functional and scaffolding roles, for example in bacterial biofilms, and have also been exploited as useful biomaterials. Despite being linear protein homopolymers, amyloid fibrils can exhibit significant structural and morphological polymorphism, making it relevant to study them on the single fibril level. We here introduce the concept of nanofluidic channel analysis to the study of single, fluorescently-labeled amyloid fibrils in solution, monitoring the extension and emission intensity of individual fibrils confined in nanochannels with a depth of 300 nm and a width that gradually increases from 300 to 3000 nm. The change in fibril extension with channel width permitted accurate determination of the persistence length of individual fibrils using Odijk's theory for strongly confined polymers. The technique was applied to amyloid fibrils prepared from the Alzheimer's related peptide amyloid-β(1-42) and the Parkinson's related protein α-synuclein, obtaining mean persistence lengths of 5.9 ± 4.5 μm and 3.0 ± 1.6 μm, respectively. The broad distributions of fibril persistence lengths indicate that amyloid fibril polymorphism can manifest in their physical properties. Interestingly, the α-synuclein fibrils had lower persistence lengths than the amyloid-β(1-42) fibrils, despite being thicker. Furthermore, there was no obvious within-sample correlation between the fluorescence emission intensity per unit length of the labelled fibrils and their persistence lengths, suggesting that stiffness may not be proportional to thickness. We foresee that the nanofluidics methodology established here will be a useful tool to study amyloid fibrils on the single fibril level to gain information on heterogeneity in their physical properties and interactions.
Collapse
Affiliation(s)
- Nima Sasanian
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Rajhans Sharma
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Quentin Lubart
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Sriram Kk
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| |
Collapse
|
9
|
Abstract
The formation of amyloid fibrils is a complex phenomenon that remains poorly understood at the atomic scale. Herein, we perform extended unbiased all-atom simulations in explicit solvent of a short amphipathic peptide to shed light on the three mechanisms accounting for fibril formation, namely, nucleation via primary and secondary mechanisms, and fibril growth. We find that primary nucleation takes place via the formation of an intermediate state made of two laminated β-sheets oriented perpendicular to each other. The amyloid fibril spine subsequently emerges from the rotation of these β-sheets to account for peptides that are parallel to each other and perpendicular to the main axis of the fibril. Growth of this spine, in turn, takes place via a dock-and-lock mechanism. We find that peptides dock onto the fibril tip either from bulk solution or after diffusing on the fibril surface. The latter docking pathway contributes significantly to populate the fibril tip with peptides. We also find that side chain interactions drive the motion of peptides in the lock phase during growth, enabling them to adopt the structure imposed by the fibril tip with atomic fidelity. Conversely, the docked peptide becomes trapped in a local free energy minimum when docked-conformations are sampled randomly. Our simulations also highlight the role played by nonpolar fibril surface patches in catalyzing and orienting the formation of small cross-β structures. More broadly, our simulations provide important new insights into the pathways and interactions accounting for primary and secondary nucleation as well as the growth of amyloid fibrils.
Collapse
Affiliation(s)
- Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
10
|
Huang G, Tang H, Liu Y, Zhang C, Ke PC, Sun Y, Ding F. Direct Observation of Seeded Conformational Conversion of hIAPP In Silico Reveals the Mechanisms for Morphological Dependence and Asymmetry of Fibril Growth. J Chem Inf Model 2023; 63:5863-5873. [PMID: 37651616 PMCID: PMC10529695 DOI: 10.1021/acs.jcim.3c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Rapid growth of amyloid fibrils via a seeded conformational conversion of monomers is a critical step of fibrillization and important for disease transmission and progression. Amyloid fibrils often display diverse morphologies with distinct populations, and yet the molecular mechanisms of fibril elongation and their corresponding morphological dependence remain poorly understood. Here, we computationally investigated the single-molecular growth of two experimentally resolved human islet amyloid polypeptide fibrils of different morphologies. In both cases, the incorporation of monomers into preformed fibrils was observed. The conformational conversion dynamics was characterized by a small number of fibril growth intermediates. Fibril morphology affected monomer binding at fibril elongation and lateral surfaces as well as the seeded conformational conversion dynamics at the fibril ends, resulting in different fibril elongation rates and populations. We also observed an asymmetric fibril growth as in our prior experiments, attributing to differences of two fibril ends in terms of their local surface curvatures and exposed hydrogen-bond donors and acceptors. Together, our mechanistic findings afforded a theoretical basis for delineating different amyloid strains-entailed divergent disease progression.
Collapse
Affiliation(s)
- Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chi Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- The Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
11
|
Thacker D, Barghouth M, Bless M, Zhang E, Linse S. Direct observation of secondary nucleation along the fibril surface of the amyloid β 42 peptide. Proc Natl Acad Sci U S A 2023; 120:e2220664120. [PMID: 37307445 PMCID: PMC10288637 DOI: 10.1073/pnas.2220664120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative condition which involves heavy neuronal cell death linked to oligomers formed during the aggregation process of the amyloid β peptide 42 (Aβ42). The aggregation of Aβ42 involves both primary and secondary nucleation. Secondary nucleation dominates the generation of oligomers and involves the formation of new aggregates from monomers on catalytic fibril surfaces. Understanding the molecular mechanism of secondary nucleation may be crucial in developing a targeted cure. Here, the self-seeded aggregation of WT Aβ42 is studied using direct stochastic optical reconstruction microscopy (dSTORM) with separate fluorophores in seed fibrils and monomers. Seeded aggregation proceeds faster than nonseeded reactions because the fibrils act as catalysts. The dSTORM experiments show that monomers grow into relatively large aggregates on fibril surfaces along the length of fibrils before detaching, thus providing a direct observation of secondary nucleation and growth along the sides of fibrils. The experiments were repeated for cross-seeded reactions of the WT Aβ42 monomer with mutant Aβ42 fibrils that do not catalyze the nucleation of WT monomers. While the monomers are observed by dSTORM to interact with noncognate fibril surfaces, we fail to notice any growth along such fibril surfaces. This implies that the failure to nucleate on the cognate seeds is not a lack of monomer association but more likely a lack of structural conversion. Our findings support a templating role for secondary nucleation, which can only take place if the monomers can copy the underlying parent structure without steric clashes or other repulsive interactions between nucleating monomers.
Collapse
Affiliation(s)
- Dev Thacker
- Department of Biochemistry and Structural Biology, Lund University, 22100Lund, Sweden
| | - Mohammad Barghouth
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 22100Lund, Sweden
| | - Mara Bless
- Department of Biochemistry and Structural Biology, Lund University, 22100Lund, Sweden
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093Zürich, Switzerland
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 22100Lund, Sweden
- NanoLund Center for NanoScience, Lund University, 22100Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, 22100Lund, Sweden
- NanoLund Center for NanoScience, Lund University, 22100Lund, Sweden
| |
Collapse
|
12
|
Iorio A, Timr Š, Chiodo L, Derreumaux P, Sterpone F. Evolution of large Aβ16-22 aggregates at atomic details and potential of mean force associated to peptide unbinding and fragmentation events. Proteins 2023. [PMID: 37139594 DOI: 10.1002/prot.26500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
Atomic characterization of large nonfibrillar aggregates of amyloid polypeptides cannot be determined by experimental means. Starting from β-rich aggregates of Y and elongated topologies predicted by coarse-grained simulations and consisting of more than 100 Aβ16-22 peptides, we performed atomistic molecular dynamics (MD), replica exchange with solute scaling (REST2), and umbrella sampling simulations using the CHARMM36m force field in explicit solvent. Here, we explored the dynamics within 3 μs, the free energy landscape, and the potential of mean force associated with either the unbinding of one single peptide in different configurations within the aggregate or fragmentation events of a large number of peptides. Within the time scale of MD and REST2, we find that the aggregates experience slow global conformational plasticity, and remain essentially random coil though we observe slow beta-strand structuring with a dominance of antiparallel beta-sheets over parallel beta-sheets. Enhanced REST2 simulation is able to capture fragmentation events, and the free energy of fragmentation of a large block of peptides is found to be similar to the free energy associated with fibril depolymerization by one chain for longer Aβ sequences.
Collapse
Affiliation(s)
- Antonio Iorio
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
| | - Štěpán Timr
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Letizia Chiodo
- Research Unit in Non Linear Physics and Mathematical Modeling Engineering Department of Campus Bio-Medico, University of Rome, Rome, Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
- Institut Universitaire de France, Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
| |
Collapse
|
13
|
Sun Y, Jack K, Ercolani T, Sangar D, Hosszu L, Collinge J, Bieschke J. Direct Observation of Competing Prion Protein Fibril Populations with Distinct Structures and Kinetics. ACS NANO 2023; 17:6575-6588. [PMID: 36802500 PMCID: PMC10100569 DOI: 10.1021/acsnano.2c12009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In prion diseases, fibrillar assemblies of misfolded prion protein (PrP) self-propagate by incorporating PrP monomers. These assemblies can evolve to adapt to changing environments and hosts, but the mechanism of prion evolution is poorly understood. We show that PrP fibrils exist as a population of competing conformers, which are selectively amplified under different conditions and can "mutate" during elongation. Prion replication therefore possesses the steps necessary for molecular evolution analogous to the quasispecies concept of genetic organisms. We monitored structure and growth of single PrP fibrils by total internal reflection and transient amyloid binding super-resolution microscopy and detected at least two main fibril populations, which emerged from seemingly homogeneous PrP seeds. All PrP fibrils elongated in a preferred direction by an intermittent "stop-and-go" mechanism, but each population possessed distinct elongation mechanisms that incorporated either unfolded or partially folded monomers. Elongation of RML and ME7 prion rods likewise exhibited distinct kinetic features. The discovery of polymorphic fibril populations growing in competition, which were previously hidden in ensemble measurements, suggests that prions and other amyloid replicating by prion-like mechanisms may represent quasispecies of structural isomorphs that can evolve to adapt to new hosts and conceivably could evade therapeutic intervention.
Collapse
Affiliation(s)
- Yuanzi Sun
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Kezia Jack
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Tiziana Ercolani
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Daljit Sangar
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Laszlo Hosszu
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - John Collinge
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Jan Bieschke
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| |
Collapse
|
14
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
15
|
Yagi-Utsumi M, Kato K. Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates. Molecules 2022; 27:4787. [PMID: 35897966 PMCID: PMC9369837 DOI: 10.3390/molecules27154787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Protein folding is the most fundamental and universal example of biomolecular self-organization and is characterized as an intramolecular process. In contrast, amyloidogenic proteins can interact with one another, leading to protein aggregation. The energy landscape of amyloid fibril formation is characterized by many minima for different competing low-energy structures and, therefore, is much more enigmatic than that of multiple folding pathways. Thus, to understand the entire energy landscape of protein aggregation, it is important to elucidate the full picture of conformational changes and polymorphisms of amyloidogenic proteins. This review provides an overview of the conformational diversity of amyloid-β (Aβ) characterized from experimental and theoretical approaches. Aβ exhibits a high degree of conformational variability upon transiently interacting with various binding molecules in an unstructured conformation in a solution, forming an α-helical intermediate conformation on the membrane and undergoing a structural transition to the β-conformation of amyloid fibrils. This review also outlines the structural polymorphism of Aβ amyloid fibrils depending on environmental factors. A comprehensive understanding of the energy landscape of amyloid formation considering various environmental factors will promote drug discovery and therapeutic strategies by controlling the fibril formation pathway and targeting the consequent morphology of aggregated structures.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
16
|
Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO J 2022; 41:e110410. [PMID: 35698800 PMCID: PMC9379549 DOI: 10.15252/embj.2021110410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Although amyloid fibres are highly stable protein aggregates, a specific combination of human Hsp70 system chaperones can disassemble them, including fibres formed of α-synuclein, huntingtin, or Tau. Disaggregation requires the ATPase activity of the constitutively expressed Hsp70 family member, Hsc70, together with the J domain protein DNAJB1 and the nucleotide exchange factor Apg2. Clustering of Hsc70 on the fibrils appears to be necessary for disassembly. Here we use atomic force microscopy to show that segments of in vitro assembled α-synuclein fibrils are first coated with chaperones and then undergo bursts of rapid, unidirectional disassembly. Cryo-electron tomography and total internal reflection fluorescence microscopy reveal fibrils with regions of densely bound chaperones, preferentially at one end of the fibre. Sub-stoichiometric amounts of Apg2 relative to Hsc70 dramatically increase recruitment of Hsc70 to the fibres, creating localised active zones that then undergo rapid disassembly at a rate of ~ 4 subunits per second. The observed unidirectional bursts of Hsc70 loading and unravelling may be explained by differences between the two ends of the polar fibre structure.
Collapse
Affiliation(s)
- Joseph George Beton
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Jim Monistrol
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erin C Johnston
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Anthony John Roberts
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Bernd Gerhard Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK.,Department of Physics & Astronomy, University College London, London, UK
| | - Helen R Saibil
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| |
Collapse
|
17
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
18
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
19
|
Mukhopadhyay S, Bera SC, Ramola K. Observation of two-step aggregation kinetics of Amyloid- βproteins from fractal analysis. Phys Biol 2022; 19. [PMID: 35381581 DOI: 10.1088/1478-3975/ac6478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022]
Abstract
Self-aggregation in proteins has long been studied and modeled due to its ubiquity and importance in many biological contexts. Several models propose a two step aggregation mechanism, consisting of linear growth of fibrils and secondary growth involving branch formation. Single molecule imaging techniques such as total internal reflection fluorescence (TIRF) microscopy can provide direct evidence of such mechanisms, however, analyzing such large data-sets is challenging. In this paper, we analyze for the first time, images of growing amyloid fibrils obtained from TIRF microscopy using the techniques of fractal geometry, which provides a natural framework to disentangle the two types of growth mechanisms at play. We find that after an initial linear growth phase, identified by a plateau in the average fractal dimension with time, the occurrence of branching events leads to a further increase in the fractal dimension, with a final saturation value ≈ 2. This provides direct evidence of the two-step nature of the aggregation kinetics of Amyloid-βproteins, with an initial linear elongation phase followed by branching at later times.
Collapse
Affiliation(s)
- Soham Mukhopadhyay
- Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, 36/P, Gopanpally Tanda, Serilingampally Mandal, Hyderabad, Telangana, 500046, INDIA
| | - Subhas C Bera
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, Erlangen, Bayern, 91058, GERMANY
| | - Kabir Ramola
- Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, 36/P, Gopanpally Tanda, Serilingampally Mandal, Hyderabad, Telangana, 500046, INDIA
| |
Collapse
|
20
|
Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-β 42. Proc Natl Acad Sci U S A 2022; 119:e2116736119. [PMID: 35290118 PMCID: PMC8944908 DOI: 10.1073/pnas.2116736119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There are various diseases caused by protein aggregation such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. From the diversity in the fibril structure, aggregation is expected to occur via heterogeneous pathways. However, characterization of this heterogeneity is extremely difficult because it requires following individual fibril formation in a mixture from early oligomerization stages. In this work, we investigated aggregation of the 42-residue isoform of amyloid β (Aβ42) using single-molecule fluorescence imaging and deep learning. We could track the growth of individual fibrils, which allows for a quantitative description of heterogeneous fibril formation and discovery of a new fibril nucleation mechanism. Further characterization of heterogeneity involving Aβ42 will be important for better understanding the disease mechanism. Polymorphism in the structure of amyloid fibrils suggests the existence of many different assembly pathways. Characterization of this heterogeneity is the key to understanding the aggregation mechanism and toxicity, but in practice it is extremely difficult to probe individual aggregation pathways in a mixture. Here, we present development of a method combining single-molecule fluorescence lifetime imaging and deep learning for monitoring individual fibril formation in real time and their high-throughput analysis. A deep neural network (FNet) separates an image of highly overlapping fibrils into single fibril images, which allows for tracking the growth and changes in characteristics of individual fibrils. Using this method, we investigated aggregation of the 42-residue amyloid-β peptide (Aβ42). We demonstrate that highly heterogeneous fibril formation can be quantitatively characterized in terms of the number of cross-β subunits, elongation speed, growth polarity, and conformation of fibrils. Tracking individual fibril formation and growth also leads to the discovery of a general nucleation mechanism (termed heterogeneous secondary nucleation), where a fibril is formed on the surface of an oligomer with a different structure. Our development will be broadly applicable to characterization of heterogeneous aggregation processes of other proteins.
Collapse
|
21
|
Watanabe-Nakayama T, Ono K. Single-molecule Observation of Self-Propagating Amyloid Fibrils. Microscopy (Oxf) 2022; 71:133-141. [DOI: 10.1093/jmicro/dfac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The assembly of misfolded proteins into amyloid fibrils is associated with amyloidosis, including neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and prion diseases. The self-propagation of amyloid fibrils is widely observed in the aggregation pathways of numerous amyloidogenic proteins. This propensity with plasticity in primary nucleation allows amyloid fibril polymorphism, which is correlated with the pathology/phenotypes of patients. Because the interference with the nucleation and replication processes of amyloid fibrils can alter the amyloid structure and the outcome of the disease, these processes can be a target for developing clinical drugs. Single-molecule observation of amyloid fibril replication can be an experimental system to provide the kinetic parameters for simulation studies and confirm the effect of clinical drugs. Here, we review single-molecule observation of the amyloid fibril replication process using fluorescence microscopy and time-lapse atomic force microscopy, including high-speed atomic force microscopy. We discussed the amyloid fibril replication process and combined single-molecule observation results with molecular dynamics simulations.
Mini Abstract Structural dynamics in amyloid aggregation is related with various Alzheimer’s and Parkinson’s disease symptoms. Single-molecule observation using high-speed atomic force microscopy can directly visualize the structural dynamics of individual amyloid aggregate assemblies. Here, we review historical and recent studies of single-molecule observation of amyloid aggregation with supportive molecular dynamics simulation.
Collapse
Affiliation(s)
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8640, Japan
| |
Collapse
|
22
|
A Palette of Fluorescent A β42 Peptides Labelled at a Range of Surface-Exposed Sites. Int J Mol Sci 2022; 23:ijms23031655. [PMID: 35163577 PMCID: PMC8836192 DOI: 10.3390/ijms23031655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Fluorescence-based single molecule techniques provide important tools towards understanding the molecular mechanism of complex neurodegenerative diseases. This requires efficient covalent attachment of fluorophores. Here we create a series of cysteine mutants (S8C, Y10C, S26C, V40C, and A42C) of Aβ42, involved in Alzheimer’s disease, based on exposed positions in the fibril structure and label them with the Alexa-fluorophores using maleimide chemistry. Direct stochastic optical reconstruction microscopy imaging shows that all the labelled mutants form fibrils that can be detected by virtue of Alexa fluorescence. Aggregation assays and cryo-electron micrographs establish that the careful choice of labelling position minimizes the perturbation of the aggregation process and fibril structure. Peptides labelled at the N-terminal region, S8C and Y10C, form fibrils independently and with wild-type. Peptides labelled at the fibril core surface, S26C, V40C and A42C, form fibrils only in mixture with wild-type peptide. This can be understood on the basis of a recent fibril model, in which S26, V40 and A42 are surface exposed in two out of four monomers per fibril plane. We provide a palette of fluorescently labelled Aβ42 peptides that can be used to gain understanding of the complex mechanisms of Aβ42 self-assembly and help to develop a more targeted approach to cure the disease.
Collapse
|
23
|
Zimmermann MR, Bera SC, Meisl G, Dasadhikari S, Ghosh S, Linse S, Garai K, Knowles TPJ. Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of Aβ42 Aggregation. J Am Chem Soc 2021; 143:16621-16629. [PMID: 34582216 DOI: 10.1021/jacs.1c07228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The formation of amyloid fibrils and oligomers is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD), and contributes to the disease pathway. To progress our understanding of these diseases at a molecular level, it is crucial to determine the mechanisms and rates of amyloid formation and replication. In the context of AD, the self-replication of aggregates of the Aβ42 peptide by secondary nucleation, leading to the formation of new aggregates on the surfaces of existing ones, is a major source of both new fibrils and smaller toxic oligomeric species. However, the core mechanistic determinants, including the presence of intermediates, as well as the role of heterogeneities in the fibril population, are challenging to determine from bulk aggregation measurements. Here, we obtain such information by monitoring directly the time evolution of individual fibrils by TIRF microscopy. Crucially, essentially all aggregates have the ability to self-replicate via secondary nucleation, and the amplification of the aggregate concentration cannot be explained by a small fraction of "superspreader" fibrils. We observe that secondary nucleation is a catalytic multistep process involving the attachment of soluble species to the fibril surface, followed by conversion/detachment to yield a new fibril in solution. Furthermore, we find that fibrils formed by secondary nucleation resemble the parent fibril population. This detailed level of mechanistic insights into aggregate self-replication is key in the rational design of potential inhibitors of this process.
Collapse
Affiliation(s)
- Manuela R Zimmermann
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Subhas C Bera
- TIFR Centre for Interdisciplinary Sciences, 500046 Hyderabad, India
- Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University, Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | | | - Shamasree Ghosh
- TIFR Centre for Interdisciplinary Sciences, 500046 Hyderabad, India
| | - Sara Linse
- Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden
| | - Kanchan Garai
- TIFR Centre for Interdisciplinary Sciences, 500046 Hyderabad, India
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| |
Collapse
|
24
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
25
|
Noi K, Ikenaka K, Mochizuki H, Goto Y, Ogi H. Disaggregation Behavior of Amyloid β Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Anal Chem 2021; 93:11176-11183. [PMID: 34351734 DOI: 10.1021/acs.analchem.1c01720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils are formed from various proteins, some of which cause the corresponding neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. It has been reported that many compounds inhibit the formation of amyloid fibrils. Anthocyanins are flavonoid pigments present in fruits and vegetables, which are known to suppress symptoms related with Alzheimer's disease. However, the influence of anthocyanins on the amyloid fibril remains unclear. Here, we succeeded in the direct monitoring of the disaggregation reaction of single amyloid β (Aβ) fibrils by anthocyanins using total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM). It is found that the disassembly activity to the Aβ fibrils depends on the number of hydroxyl groups in six-membered ring B of anthocyanin, and only delphinidin-3-galactoside, possessing three hydroxyl groups there, shows high disassembly activity. Our results show the importance of the number of hydroxyl groups and demonstrate the usefulness of TIRFM-QCM as a powerful tool in studying interactions between amyloid fibrils and compounds.
Collapse
Affiliation(s)
- Kentaro Noi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Saha D, Jana B. Kinetic and thermodynamic stability comparison for the fibrillar form of small amyloid-β(1-42) oligomers using scaled molecular dynamics. Phys Chem Chem Phys 2021; 23:16897-16908. [PMID: 34328153 DOI: 10.1039/d1cp01866c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amyloid-β (Aβ) oligomers act as intermediates for several neurodegenerative disease-relevant fibril formations. However, gaining insight into the oligomer to fibril conversion process remains a challenge due to the transient nature of small Aβ. In this study, we probe the kinetic and thermodynamic stabilities of small Aβ(1-42) oligomers in fibrillar conformations to understand from what size these aggregates start forming stable fibrils. With no definite structures available for small Aβ42 aggregates, we have started with oligomers extracted from mature fibrils having four, five, six and nine chains stacked together, and have performed order-to-disorder transition on these systems. Using scaled molecular dynamics (sMD) simulation, the timescale for breaking the native contacts of fibrils has been compared. The results indicate that the kinetic stability of oligomers increases with size, especially at the C-terminus end beyond five-chain oligomers. The free energy of breaking the contacts at the β-sheet regions in the structures has been obtained on an unscaled potential from a free energy extrapolation (FEE) approach. The values show that although stable minima are obtained for larger oligomers due to the enhanced stability of the C-terminus ends, fully stable fibril formation may require aggregates larger than the ones considered in our study. Additionally, dissimilar kinetics for the unbinding of terminal chains across all the oligomers has been observed. The interaction energy values calculated from unscaled MD simulations reveal the crucial role of water in our observations. Our work provides the application of an easy-to-deploy method that sheds light on interactions which could be significant in the early stages of Aβ42 fibril formation.
Collapse
Affiliation(s)
- Debasis Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | | |
Collapse
|
27
|
Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol 2021; 70:87-98. [PMID: 34153659 DOI: 10.1016/j.sbi.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Several devastating human diseases are linked to peptide self-assembly, but our understanding their onset and progression is not settled. This is a sign of the complexity of the aggregation process, which is prevented, catalyzed, or retarded by numerous factors in body fluids and cells, varying in time and space. Biophysical studies of pure peptide solutions contribute insights into the underlying steps in the process and quantitative parameters relating to rate constants (energy barriers) and equilibrium constants (population distributions). This requires methods to quantify the concentration of at least one species in the process. Translation to an in vivo situation poses an enormous challenge, and the effects of selected components (bottom up) or entire body fluids (top down) need to be quantified.
Collapse
|
28
|
Multiscale Models for Fibril Formation: Rare Events Methods, Microkinetic Models, and Population Balances. Life (Basel) 2021; 11:life11060570. [PMID: 34204410 PMCID: PMC8234428 DOI: 10.3390/life11060570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid fibrils are thought to grow by a two-step dock-lock mechanism. However, previous simulations of fibril formation (i) overlook the bi-molecular nature of the docking step and obtain rates with first-order units, or (ii) superimpose the docked and locked states when computing the potential of mean force for association and thereby muddle the docking and locking steps. Here, we developed a simple microkinetic model with separate locking and docking steps and with the appropriate concentration dependences for each step. We constructed a simple model comprised of chiral dumbbells that retains qualitative aspects of fibril formation. We used rare events methods to predict separate docking and locking rate constants for the model. The rate constants were embedded in the microkinetic model, with the microkinetic model embedded in a population balance model for “bottom-up” multiscale fibril growth rate predictions. These were compared to “top-down” results using simulation data with the same model and multiscale framework to obtain maximum likelihood estimates of the separate lock and dock rate constants. We used the same procedures to extract separate docking and locking rate constants from experimental fibril growth data. Our multiscale strategy, embedding rate theories, and kinetic models in conservation laws should help to extract docking and locking rate constants from experimental data or long molecular simulations with correct units and without compromising the molecular description.
Collapse
|
29
|
Amin L, Harris DA. Aβ receptors specifically recognize molecular features displayed by fibril ends and neurotoxic oligomers. Nat Commun 2021; 12:3451. [PMID: 34103486 PMCID: PMC8187732 DOI: 10.1038/s41467-021-23507-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Several cell-surface receptors for neurotoxic forms of amyloid-β (Aβ) have been described, but their molecular interactions with Aβ assemblies and their relative contributions to mediating Alzheimer's disease pathology have remained uncertain. Here, we used super-resolution microscopy to directly visualize Aβ-receptor interactions at the nanometer scale. We report that one documented Aβ receptor, PrPC, specifically inhibits the polymerization of Aβ fibrils by binding to the rapidly growing end of each fibril, thereby blocking polarized elongation at that end. PrPC binds neurotoxic oligomers and protofibrils in a similar fashion, suggesting that it may recognize a common, end-specific, structural motif on all of these assemblies. Finally, two other Aβ receptors, FcγRIIb and LilrB2, affect Aβ fibril growth in a manner similar to PrPC. Our results suggest that receptors may trap Aβ oligomers and protofibrils on the neuronal surface by binding to a common molecular determinant on these assemblies, thereby initiating a neurotoxic signal.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Awasthi P, Singh A, Khatun S, Gupta AN, Das S. Fibril growth captured by electrical properties of amyloid-β and human islet amyloid polypeptide. Phys Rev E 2021; 101:062413. [PMID: 32688470 DOI: 10.1103/physreve.101.062413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 11/07/2022]
Abstract
The aggregation of amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) proteins have attracted considerable attention because of their involvement in protein misfolding diseases. These proteins have mostly been investigated using atomic force microscopy, transmission electron microscopy, and fluorescence microscopy to study the directional growth of fibrils both perpendicular to and along the fibril axis. Here, we demonstrate the real-time monitoring of the directional growth of fibrils in terms of activation energy of proton transfer using an impedance spectroscopy technique. The activation energy is used to quantify the sensitivity of proton conduction to the different stages of protein aggregation. The decrement (increment) in activation energy is related to the fibril growth along (perpendicular to) the fibril axis in intrinsic protein aggregation. The entire aggregation process shows different phases of the directional growth for Aβ and hIAPP, indicating different pathways for their aggregation. The activation energy for hIAPP is found to be smaller than the activation energy of Aβ during the aggregation process. The oscillatory behavior of the activation energy of hIAPP reflects a rapid change in the directional growth of the protofilaments of hIAPP. The results indicate higher aggregation propensity of Aβ than hIAPP. In the presence of resveratrol, hIAPP exhibits slower aggregation compared to Aβ. Methods of this study may in general be used to reveal the modulated aggregation pathway of proteins in the presence of different ligands.
Collapse
Affiliation(s)
- Prasoon Awasthi
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Soumen Das
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
31
|
Barz B, Buell AK, Nath S. Compact fibril-like structure of amyloid β-peptide (1-42) monomers. Chem Commun (Camb) 2021; 57:947-950. [PMID: 33399148 DOI: 10.1039/d0cc06607a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid β (Aβ) monomers are the smallest assembly units, and play an important role in most of the individual processes involved in amyloid fibril formation. An important question is whether the monomer can adopt transient fibril-like conformations in solution. Here we use enhanced sampling simulations to study the Aβ42 monomer structural flexibility. We show that the monomer frequently adopts conformations with the N-terminus region structured very similarly to the conformation it adopts inside the fibril. This intrinsic propensity of monomeric Aβ to adopt fibril-like conformations could explain the low free energy barrier for Aβ42 fibril elongation.
Collapse
Affiliation(s)
- Bogdan Barz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany and Institute of Biological Information Processing - Structural Biochemistry (IBI-7), Research Centre Jülich, Jülich, Germany.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Soumav Nath
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany and Institute of Biological Information Processing - Structural Biochemistry (IBI-7), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
32
|
Chung CW, Kaminski Schierle GS. Intracellular Thermometry at the Micro-/Nanoscale and its Potential Application to Study Protein Aggregation Related to Neurodegenerative Diseases. Chembiochem 2021; 22:1546-1558. [PMID: 33326160 DOI: 10.1002/cbic.202000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Temperature is a fundamental physical parameter that influences biological processes in living cells. Hence, intracellular temperature mapping can be used to derive useful information reflective of thermodynamic properties and cellular behaviour. Herein, existing publications on different thermometry systems, focusing on those that employ fluorescence-based techniques, are reviewed. From developments based on fluorescent proteins and inorganic molecules to metal nanoclusters and fluorescent polymers, the general findings of intracellular measurements from different research groups are discussed. Furthermore, the contradiction of mitochondrial thermogenesis and nuclear-cytoplasmic temperature differences to current thermodynamic understanding are highlighted. Lastly, intracellular thermometry is proposed as a tool to quantify the energy flow and cost associated with amyloid-β42 (Aβ42) aggregation, a hallmark of Alzheimer's disease.
Collapse
Affiliation(s)
- Chyi Wei Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
33
|
Chung CW, Kaminski Schierle GS. Intracellular Thermometry to Study Protein Aggregation Related to Neurodegenerative Diseases. Trends Biochem Sci 2021; 46:251-252. [PMID: 33413994 DOI: 10.1016/j.tibs.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Affiliation(s)
- C W Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - G S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
34
|
Singh A, Khatun S, Nath Gupta A. Simultaneous Detection of Tyrosine and Structure‐Specific Intrinsic Fluorescence in the Fibrillation of Alzheimer's Associated Peptides. Chemphyschem 2020; 21:2585-2598. [DOI: 10.1002/cphc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Anurag Singh
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
35
|
Gallrein C, Iburg M, Michelberger T, Koçak A, Puchkov D, Liu F, Ayala Mariscal SM, Nayak T, Kaminski Schierle GS, Kirstein J. Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Prog Neurobiol 2020; 198:101907. [PMID: 32926945 DOI: 10.1016/j.pneurobio.2020.101907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aβ1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aβ is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aβ1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aβ1-42. Expression of Aβ1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aβ to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aβ aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aβ in these IL2 neurons systemically delays Aβ aggregation and pathology.
Collapse
Affiliation(s)
- Christian Gallrein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tim Michelberger
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Alen Koçak
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Fan Liu
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Sara Maria Ayala Mariscal
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tanmoyita Nayak
- University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany
| | - Gabriele S Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany; University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
36
|
Feuillie C, Lambert E, Ewald M, Azouz M, Henry S, Marsaudon S, Cullin C, Lecomte S, Molinari M. High Speed AFM and NanoInfrared Spectroscopy Investigation of Aβ 1-42 Peptide Variants and Their Interaction With POPC/SM/Chol/GM1 Model Membranes. Front Mol Biosci 2020; 7:571696. [PMID: 33033718 PMCID: PMC7510551 DOI: 10.3389/fmolb.2020.571696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aβ1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aβ1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aβ1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aβ peptides, L34T, oG37C, and WT Aβ1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel β-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aβ1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.
Collapse
Affiliation(s)
- Cecile Feuillie
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Eleonore Lambert
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Mehdi Azouz
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France.,Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Sarah Henry
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Sophie Marsaudon
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Michael Molinari
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| |
Collapse
|
37
|
Ding T, Wu T, Mazidi H, Zhang O, Lew MD. Single-molecule orientation localization microscopy for resolving structural heterogeneities between amyloid fibrils. OPTICA 2020; 7:602-607. [PMID: 32832582 PMCID: PMC7440617 DOI: 10.1364/optica.388157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Simultaneous measurements of single-molecule positions and orientations provide critical insight into a variety of biological and chemical processes. Various engineered point spread functions (PSFs) have been introduced for measuring the orientation and rotational diffusion of dipole-like emitters, but the widely used Cramér-Rao bound (CRB) only evaluates performance for one specific orientation at a time. Here, we report a performance metric, termed variance upper bound (VUB), that yields a global maximum CRB for all possible molecular orientations, thereby enabling the measurement performance of any PSF to be computed efficiently (~1000× faster than calculating average CRB). Our VUB reveals that the simple polarized standard PSF provides robust and precise orientation measurements if emitters are near a refractive index interface. Using this PSF, we measure the orientations and positions of Nile red (NR) molecules transiently bound to amyloid aggregates. Our super-resolved images reveal the main binding mode of NR on amyloid fiber surfaces, as well as structural heterogeneities along amyloid fibrillar networks, that cannot be resolved by single-molecule localization alone.
Collapse
Affiliation(s)
- Tianben Ding
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
| | - Tingting Wu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
| | - Hesam Mazidi
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, Missouri 63130, USA
- Corresponding author:
| |
Collapse
|
38
|
Yu HJ, Zhao W, Xie M, Li X, Sun M, He J, Wang L, Yu L. Real-Time Monitoring of Self-Aggregation of β-Amyloid by a Fluorescent Probe Based on Ruthenium Complex. Anal Chem 2020; 92:2953-2960. [PMID: 31941275 DOI: 10.1021/acs.analchem.9b03566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-accumulation of amyloid-β protein (Aβ) into insoluble fibrils is the major hallmark of Alzheimer's disease. Real-time monitoring of fibril growth is essential for clarifying the mechanism underlying aggregation and discovering therapeutic targets. A variety of approaches including NMR, electron microscopy (EM), atomic force microscopy (AFM), and total internal reflection fluorescence microscopy (TIRFM) have been explored to monitor the fibril growth or reveal morphology of Aβ aggregates. However, none of the methods allow real-time observation under physiological conditions while without any perturbations. Here, we present a fluorescent probe [Ru(phen)2(fipc)]2+ (Ru-fipc) (phen = 1,10-phenanthroline, fipc = 5-fluoro-N-(1,10-phenanthrolin-5-yl)-1H-indole-2-carboxamide) that can bind to all the Aβ forms, i.e., monomers, oligomers, and fibrils, while not perturbing aggregation. Using this probe in combination with laser confocal microscopy, the entire aggregation process could be clearly and exactly imaged at the single fibril level. The reliability of Ru-fipc was confirmed based on colocalization with thioflavin T (ThT). Importantly, Ru-fipc can be used to monitor the very early nucleation and oligomerization process, which is thought to be a critical step in the development of neurotoxicity while it cannot be visualized with ThT. To our knowledge, this is the first fluorescent probe developed for real-time monitoring of Aβ aggregation, especially for the very early assembly stage, in solution with minimal perturbation. This method is suitable for in vitro and in vivo studies. We believe this would provide a valuable complementary tool for the study of pathogenesis and discovery of therapeutic targets of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui-Juan Yu
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Wei Zhao
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Mengting Xie
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Xiaoqing Li
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Ming Sun
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Jun He
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University and Institute of Molecular and Functional Imaging , Jinan University , 613 West Huangpu Avenue , Guangzhou 510630 PR China
| | - Lin Yu
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| |
Collapse
|
39
|
The growth of amyloid fibrils: rates and mechanisms. Biochem J 2019; 476:2677-2703. [DOI: 10.1042/bcj20160868] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
AbstractAmyloid fibrils are β-sheet-rich linear protein polymers that can be formed by a large variety of different proteins. These assemblies have received much interest in recent decades, due to their role in a range of human disorders. However, amyloid fibrils are also found in a functional context, whereby their structural, mechanical and thermodynamic properties are exploited by biological systems. Amyloid fibrils form through a nucleated polymerisation mechanism with secondary processes acting in many cases to amplify the number of fibrils. The filamentous nature of amyloid fibrils implies that the fibril growth rate is, by several orders of magnitude, the fastest step of the overall aggregation reaction. This article focusses specifically on in vitro experimental studies of the process of amyloid fibril growth, or elongation, and summarises the state of knowledge of its kinetics and mechanisms. This work attempts to provide the most comprehensive summary, to date, of the available experimental data on amyloid fibril elongation rate constants and the temperature and concentration dependence of amyloid fibril elongation rates. These data are compared with those from other types of protein polymers. This comparison with data from other polymerising proteins is interesting and relevant because many of the basic ideas and concepts discussed here were first introduced for non-amyloid protein polymers, most notably by the Japanese school of Oosawa and co-workers for cytoskeletal filaments.
Collapse
|
40
|
Kakinen A, Xing Y, Arachchi NH, Javed I, Feng L, Faridi A, Douek AM, Sun Y, Kaslin J, Davis TP, Higgins MJ, Ding F, Ke PC. Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. NANO LETTERS 2019; 19:6535-6546. [PMID: 31455083 PMCID: PMC6742555 DOI: 10.1021/acs.nanolett.9b02771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human amyloids and plaques uncovered post mortem are highly heterogeneous in structure and composition, yet literature concerning the heteroaggregation of amyloid proteins is extremely scarce. This knowledge deficiency is further exacerbated by the fact that peptide delivery is a major therapeutic strategy for targeting their full-length counterparts associated with the pathologies of a range of human diseases, including dementia and type 2 diabetes (T2D). Accordingly, here we examined the coaggregation of full-length human islet amyloid polypeptide (IAPP), a peptide associated with type 2 diabetes, with its primary and secondary amyloidogenic fragments 19-29 S20G and 8-20. Single-molecular aggregation dynamics was obtained by high-speed atomic force microscopy, augmented by transmission electron microscopy, X-ray diffraction, and super-resolution stimulated emission depletion microscopy. The coaggregation significantly prolonged the pause phase of fibril elongation, increasing its dwell time by 3-fold. Surprisingly, unidirectional elongation of mature fibrils, instead of protofilaments, was observed for the coaggregation, indicating a new form of tertiary protein aggregation unknown to existing theoretical models. Further in vivo zebrafish embryonic assay indicated improved survival and hatching, as well as decreased frequency and severity of developmental abnormalities for embryos treated with the heteroaggregates of IAPP with 19-29 S20G, but not with 8-20, compared to the control, indicating the therapeutic potential of 19-29 S20G against T2D.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Nuwan Hegoda Arachchi
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lei Feng
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J. Higgins
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
41
|
Agrawal N, Skelton AA. Structure and Function of Alzheimer’s Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Protein J 2019; 38:425-434. [DOI: 10.1007/s10930-019-09854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Xu Y, Safari MS, Ma W, Schafer NP, Wolynes PG, Vekilov PG. Steady, Symmetric, and Reversible Growth and Dissolution of Individual Amyloid-β Fibrils. ACS Chem Neurosci 2019; 10:2967-2976. [PMID: 31099555 DOI: 10.1021/acschemneuro.9b00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomers and fibrils of the amyloid-β (Aβ) peptide are implicated in the pathology of Alzheimer's disease. Here, we monitor the growth of individual Aβ40 fibrils by time-resolved in situ atomic force microscopy and thereby directly measure fibril growth rates. The measured growth rates in a population of fibrils that includes both single protofilaments and bundles of filaments are independent of the fibril thickness, indicating that cooperation between adjacent protofilaments does not affect incorporation of monomers. The opposite ends of individual fibrils grow at similar rates. In contrast to the "stop-and-go" kinetics that has previously been observed for amyloid-forming peptides, growth and dissolution of the Aβ40 fibrils are relatively steady for peptide concentration of 0-10 μM. The fibrils readily dissolve in quiescent peptide-free solutions at a rate that is consistent with the microscopic reversibility of growth and dissolution. Importantly, the bimolecular rate coefficient for the association of a monomer to the fibril end is significantly smaller than the diffusion limit, implying that the transition state for incorporation of a monomer into a fibril is associated with a relatively high free energy.
Collapse
Affiliation(s)
- Yuechuan Xu
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Mohammad S. Safari
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Wenchuan Ma
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Nicholas P. Schafer
- Center for Theoretical Biological Physics, Rice University, P.O. Box 1892, MS 654, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University, P.O. Box 1892, MS 60, Houston, Texas 77251-1892, United States
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, P.O. Box 1892, MS 654, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University, P.O. Box 1892, MS 60, Houston, Texas 77251-1892, United States
| | - Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, Texas 77204-5003, United States
| |
Collapse
|
43
|
Cosentino M, Canale C, Bianchini P, Diaspro A. AFM-STED correlative nanoscopy reveals a dark side in fluorescence microscopy imaging. SCIENCE ADVANCES 2019; 5:eaav8062. [PMID: 31223651 PMCID: PMC6584704 DOI: 10.1126/sciadv.aav8062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
It is known that the presence of fluorophores can influence the dynamics of molecular processes. Despite this, an affordable technique to control the fluorophore distribution within the sample, as well as the rise of unpredictable anomalous processes induced by the fluorophore itself, is missing. We coupled a stimulated emission depletion (STED) microscope with an atomic force microscope to investigate the formation of amyloid aggregates. In particular, we studied the in vitro aggregation of insulin and two alloforms of β amyloid peptides. We followed standard methods to induce the aggregation and to label the molecules at different dye-to-protein ratios. Only a fraction of the fibrillar aggregates was displayed in STED images, indicating that the labeled molecules did not participate indistinctly to the aggregation process. This finding demonstrates that labeled molecules follow only selected pathways of aggregation, among the multiple that are present in the aggregation reaction.
Collapse
Affiliation(s)
- Michela Cosentino
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- DIBRIS Department, University of Genova, Genova, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Physics, University of Genova, Genova, Italy
| | - Paolo Bianchini
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
44
|
Gulácsy CE, Meade R, Catici DAM, Soeller C, Pantos GD, Jones DD, Alibhai D, Jepson M, Valev VK, Mason JM, Williams RJ, Pudney CR. Excitation-Energy-Dependent Molecular Beacon Detects Early Stage Neurotoxic Aβ Aggregates in the Presence of Cortical Neurons. ACS Chem Neurosci 2019; 10:1240-1250. [PMID: 30346718 DOI: 10.1021/acschemneuro.8b00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is now crucial medical importance placed on understanding the role of early stage, subvisible protein aggregation, particularly in neurodegenerative disease. While there are strategies for detecting such aggregates in vitro, there is no approach at present that can detect these toxic species associated with cells and specific subcellular compartments. We have exploited excitation-energy-dependent fluorescence edge-shift of recombinant protein labeled with a molecular beacon, to provide a sensitive read out for the presence of subvisible protein aggregates. To demonstrate the potential utility of the approach, we examine the major peptide associated with the initiation of Alzheimer's disease, amyloid β-protein (Aβ) at a patho-physiologically relevant concentration in mouse cortical neurons. Using our approach, we find preliminary evidence that subvisible Aβ aggregates are detected at specific subcellular regions and that neurons drive the formation of specific Aβ aggregate conformations. These findings therefore demonstrate the potential of a novel fluorescence-based approach for detecting and imaging protein aggregates in a cellular context, which can be used to sensitively probe the association of early stage toxic protein aggregates within subcellular compartments.
Collapse
Affiliation(s)
| | | | | | - Christian Soeller
- Biomedical Physics, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - D. Dafydd Jones
- School of Biosciences, Cardiff University, Cardiff CF10 3TL, United Kingdom
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mark Jepson
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Akhatova F, Danilushkina A, Kuku G, Saricam M, Culha M, Fakhrullin R. Simultaneous Intracellular Detection of Plasmonic and Non-Plasmonic Nanoparticles Using Dark-Field Hyperspectral Microscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Anna Danilushkina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Gamze Kuku
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Melike Saricam
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| |
Collapse
|
46
|
Cohen SIA, Cukalevski R, Michaels TCT, Šarić A, Törnquist M, Vendruscolo M, Dobson CM, Buell AK, Knowles TPJ, Linse S. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide. Nat Chem 2018; 10:523-531. [PMID: 29581486 PMCID: PMC5911155 DOI: 10.1038/s41557-018-0023-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.
Collapse
Affiliation(s)
- Samuel I A Cohen
- Department of Chemistry and Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Risto Cukalevski
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund, Sweden
| | - Thomas C T Michaels
- Department of Chemistry and Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK
| | - Mattias Törnquist
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund, Sweden
| | - Michele Vendruscolo
- Department of Chemistry and Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Department of Chemistry and Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Alexander K Buell
- Institute of Physical Biology, University of Duesseldorf, Duesseldorf, Germany
| | - Tuomas P J Knowles
- Department of Chemistry and Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund, Sweden.
| |
Collapse
|
47
|
Rodriguez RA, Chen LY, Plascencia-Villa G, Perry G. Thermodynamics of Amyloid-β Fibril Elongation: Atomistic Details of the Transition State. ACS Chem Neurosci 2018; 9:783-789. [PMID: 29239603 PMCID: PMC5911799 DOI: 10.1021/acschemneuro.7b00409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
Amyloid-β
(Aβ) fibrils and plaques are one of the hallmarks
of Alzheimer’s disease. While the kinetics of fibrillar growth
of Aβ have been extensively studied, several vital questions
remain. In particular, the atomistic origins of the Arrhenius barrier
observed in experiments have not been elucidated. Employing the familiar
thermodynamic integration method, we have directly simulated the dissociation
of an Aβ(15–40) (D23N mutant) peptide from
the surface of a filament along its most probable path (MPP) using
all-atom molecular dynamics. This allows for a direct calculation
of the free energy profile along the MPP, revealing a multipeak energetic
barrier between the free peptide state and the aggregated state. By
definition of the MPP, this simulated unbinding process represents
the reverse of the physical elongation pathway, allowing us to draw
biophysically relevant conclusions from the simulation data. Analyzing
the detailed atomistic interactions along the MPP, we identify the
atomistic origins of these peaks as resulting from the dock-lock mechanism
of filament elongation. Careful analysis of the dynamics of filament
elongation could prove key to the development of novel therapeutic
strategies for amyloid-related diseases.
Collapse
Affiliation(s)
- Roberto A. Rodriguez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Liao Y. Chen
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Germán Plascencia-Villa
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
48
|
Wang J, Yamamoto T, Bai J, Cox SJ, Korshavn KJ, Monette M, Ramamoorthy A. Real-time monitoring of the aggregation of Alzheimer's amyloid-β via 1H magic angle spinning NMR spectroscopy. Chem Commun (Camb) 2018; 54:2000-2003. [PMID: 29411841 DOI: 10.1039/c8cc00167g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton magic-angle-spinning NMR used for real-time analysis of amyloid aggregation reveals that mechanical rotation of Aβ1-40 monomers increases the rate of formation of aggregates, and that the increasing lag-time with peptide concentration suggests the formation of growth-incompetent species. EGCG's ability to shift off-pathway aggregation is also demonstrated.
Collapse
Affiliation(s)
- Jian Wang
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|