1
|
Li Q, Woo D, Kim JK, Li W. Truly “Inverted” Cylinders and Spheres Formed in the A(AB) 3/AC Blends of B/C Hydrogen Bonding Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingyun Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Dokyung Woo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin-Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
2
|
Yan XY, Guo QY, Liu XY, Wang Y, Wang J, Su Z, Huang J, Bian F, Lin H, Huang M, Lin Z, Liu T, Liu Y, Cheng SZD. Superlattice Engineering with Chemically Precise Molecular Building Blocks. J Am Chem Soc 2021; 143:21613-21621. [PMID: 34913335 DOI: 10.1021/jacs.1c09831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.
Collapse
Affiliation(s)
- Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zebin Su
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiahao Huang
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiwei Lin
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Tong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
4
|
Chen L, Qiang Y, Li W. Tuning Arm Architecture Leads to Unusual Phase Behaviors in a (BAB)5 Star Copolymer Melt. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01484] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Jiang W, Qiang Y, Li W, Qiu F, Shi AC. Effects of Chain Topology on the Self-Assembly of AB-Type Block Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02389] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenbo Jiang
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Feng Qiu
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
6
|
Zhao B, Jiang W, Chen L, Li W, Qiu F, Shi AC. Emergence and Stability of a Hybrid Lamella-Sphere Structure from Linear ABAB Tetrablock Copolymers. ACS Macro Lett 2018; 7:95-99. [PMID: 35610924 DOI: 10.1021/acsmacrolett.7b00818] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The self-assembly of linear A1B1A2B2 tetrablock copolymers is studied using the self-consistent field theory, aiming to target the formation of stable hybrid structures composed of lamellar and spherical domains of the same component, i.e., the lamella-sphere (LS) phase. Two types of lamellar morphologies, regular (L) and sandwich-like (L'), are observed, and their transition is identified as first-order. The formation of L' is a prior condition for the formation of LS because the disordered short A2-blocks sandwiched in the B domain in L' aggregate into spheres as χN increases, leading to the formation of LS. The separation of A2-blocks from A1-blocks in L' or LS causes extra interfacial energy, which is compensated by the gain of configurational entropy. The tail B2-block is demonstrated to play a critical role in enlarging the gain of configurational entropy. In a word, the formation of L' is driven by entropy, while the transition from L' to LS is driven by enthalpy.
Collapse
Affiliation(s)
- Bin Zhao
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wenbo Jiang
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lei Chen
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Feng Qiu
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|