1
|
Yang J, Liu X, Deng X, Tang Z, Cao L. Surface-engineered Mo 2B: a promising electrode material for constructing Ohmic contacts with blue phosphorene for electronic device applications. Phys Chem Chem Phys 2024; 26:15666-15671. [PMID: 38764438 DOI: 10.1039/d4cp00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The Schottky barrier between a metal and a semiconductor plays an important role in determining the transport efficiency of carriers and improving the performance of devices. In this work, we systematically studied the structure and electronic properties of heterostructures of blue phosphorene (BP) in contact with Mo2B based on density functional theory. The semiconductor properties of BP are destroyed owing to strong interaction with bare Mo2B. The effect of modifying Mo2B with O and OH on the contact properties was investigated. A p-type Schottky contact can be obtained in BP/Mo2BO2. The height of the Schottky barrier can be modulated by interlayer distance to realize a transition from a p-type Schottky contact to a p-type Ohmic contact in BP/Mo2BO2. The BP/Mo2B(OH)2 forms robust Ohmic contacts, which are insensitive to interlayer distance and external electric fields due to the Fermi level pinning effect. Our work provides important clues for contact engineering and improvement of device performance based on BP.
Collapse
Affiliation(s)
- Jingying Yang
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Xiang Liu
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Xiaohui Deng
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Zhenkun Tang
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Liemao Cao
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| |
Collapse
|
2
|
Singh J, Kumar A. First principles study of 2D ring-Te and its electrical contact with a topological Dirac semimetal. NANOSCALE 2023; 15:5360-5370. [PMID: 36815720 DOI: 10.1039/d2nr06909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, researchers have manifested their interest in two-dimensional (2D) mono-elemental materials of group-VI elements because of their excellent optoelectronic, photovoltaic and thermoelectric properties. Despite the intensive recent research efforts, there is still a possibility of novel 2D allotropes of these elements due to their multivalency nature. Here, we have predicted a novel 2D allotrope of tellurium (ring-Te) using density functional theory. Its stability is confirmed by phonon and ab initio molecular dynamics simulations. Ring-Te has an indirect band gap of 0.69 eV (1.16 eV) at the PBE (HSE06) level of theories and undergoes an indirect-direct band gap transition under tensile strain. The higher carrier mobility of holes (∼103 cm2 V-1 s-1), good UV-visible light absorption ability and low exciton binding (∼0.35 eV) of ring-Te give rise to its potential applications in optoelectronic devices. Furthermore, the electrical contact of ring-Te with a topological Dirac semimetal (sq-Te) under the influence of an electric field shows that the Schottky barriers and contact types can undergo transition from p-type to n-type Schottky contact and then to ohmic contact at a higher electric field. Our study provides an insight into the physics of designing high-performance electrical coupled devices composed of 2D semiconductors and topological semimetals.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Physics, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India.
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India.
| |
Collapse
|
3
|
Di Liberto G, Tosoni S. Band Edges Engineering of 2D/2D Heterostructures: The C 3 N 4 /Phosphorene Interface. Chemphyschem 2023; 24:e202200791. [PMID: 36399544 DOI: 10.1002/cphc.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Indexed: 11/19/2022]
Abstract
We investigate the interface between carbon nitride (C3 N4 ) and phosphorene nanosheets (P-ene) by means of Density Functional Theory (DFT) calculations. C3 N4 /P-ene composites have been recently obtained experimentally showing excellent photoactivity. Our results indicate that the formation of the interface is a favorable process driven by Van der Waals forces. The thickness of P-ene nanosheets determines the band edges offsets and the charge carriers' separation. The system is predicted to pass from a nearly type-II to a type-I junction when the thickness of P-ene increases, and the conduction band offset is particularly sensitive. Last, we apply the Transfer Matrix Method to estimate the efficiency for charge carriers' migration as a function of the P-ene thickness.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
4
|
Tetrahydrofuran and 2-methyltetrahydrofuran adsorption studies on violet phosphorene nanosheets based on first-principles studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Slepchenkov MM, Kolosov DA, Glukhova OE. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4084. [PMID: 35744141 PMCID: PMC9230885 DOI: 10.3390/ma15124084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023]
Abstract
At present, the combination of 2D materials of different types of conductivity in the form of van der Waals heterostructures is an effective approach to designing electronic devices with desired characteristics. In this paper, we design novel van der Waals heterostructures by combing buckled triangular borophene (tr-B) and graphene-like gallium nitride (GaN) monolayers, and tr-B and zinc oxide (ZnO) monolayers together. Using ab initio methods, we theoretically predict the structural, electronic, and electrically conductive properties of tr-B/GaN and tr-B/ZnO van der Waals heterostructures. It is shown that the proposed atomic configurations of tr-B/GaN and tr-B/ZnO heterostructures are energetically stable and are characterized by a gapless band structure in contrast to the semiconductor character of GaN and ZnO monolayers. We find the phenomenon of charge transfer from tr-B to GaN and ZnO monolayers, which predetermines the key role of borophene in the formation of the features of the electronic structure of tr-B/GaN and tr-B/ZnO van der Waals heterostructures. The results of the calculation of the current-voltage (I-V) curves reveal that tr-B/GaN and tr-B/ZnO van der Waals heterostructures are characterized by the phenomenon of current anisotropy: the current along the zigzag edge of the ZnO/GaN monolayers is five times greater than along the armchair edge of these monolayers. Moreover, the heterostructures show good stability of current to temperature change at small voltage. These findings demonstrate that r-B/GaN and tr-B/ZnO vdW heterostructures are promising candidates for creating the element base of nanoelectronic devices, in particular, a conducting channel in field-effect transistors.
Collapse
Affiliation(s)
- Michael M. Slepchenkov
- Institute of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (M.M.S.); (D.A.K.)
| | - Dmitry A. Kolosov
- Institute of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (M.M.S.); (D.A.K.)
| | - Olga E. Glukhova
- Institute of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (M.M.S.); (D.A.K.)
- Laboratory of Wearable Biocompatible Devices and Bionic Prostheses, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russia
| |
Collapse
|
6
|
First-Principles Study of Electronic and Optical Properties of Tri-Layered van der Waals Heterostructures Based on Blue Phosphorus and Zinc Oxide. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6060163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The creation of van der Waals heterostructures with tunable properties from various combinations of modern 2D materials is one of the promising tasks of nanoelectronics, focused on improving the parameters of electronic nanodevices. In this paper, using ab initio methods, we theoretically predict the existence of new three-layer van der Waals zinc oxide/blue phosphorus/zinc oxide (ZnO/BlueP/ZnO) heterostructure with AAA, ABA, ABC layer packing types. It is found that AAA-, ABA-, and ABC-stacked ZnO/BlueP/ZnO heterostructures are semiconductors with a gap of about 0.7 eV. The dynamic conductivity and absorption spectra are calculated in the wavelength range of 200–2000 nm. It is revealed that the BlueP monolayer makes the greatest contribution to the formation of the profiles the dynamic conductivity and absorption coefficient spectrums of the ZnO/BlueP/ZnO heterostructure. This is indicated by the fact that, for the ZnO/BlueP/ZnO heterostructure, conductivity anisotropy is observed at different directions of wave polarization, as for blue phosphorus. It has been established that the absorption maximum of the heterostructure falls in the middle ultraviolet range, and, starting from a wavelength of 700 nm, there is a complete absence of absorption. The type of layer packing has practically no effect on the regularities in the formation of the spectra of dynamic conductivity and the absorption coefficient, which is important from the point of view of their application in optoelectronics.
Collapse
|
7
|
Wang Y, Liu S, Li Q, Quhe R, Yang C, Guo Y, Zhang X, Pan Y, Li J, Zhang H, Xu L, Shi B, Tang H, Li Y, Yang J, Zhang Z, Xiao L, Pan F, Lu J. Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:056501. [PMID: 33761489 DOI: 10.1088/1361-6633/abf1d4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Over the past decade, two-dimensional semiconductors (2DSCs) have aroused wide interest due to their extraordinary electronic, magnetic, optical, mechanical, and thermal properties, which hold potential in electronic, optoelectronic, thermoelectric applications, and so forth. The field-effect transistor (FET), a semiconductor gated with at least three terminals, is pervasively exploited as the device geometry for these applications. For lack of effective and stable substitutional doping techniques, direct metal contact is often used in 2DSC FETs to inject carriers. A Schottky barrier (SB) generally exists in the metal-2DSC junction, which significantly affects and even dominates the performance of most 2DSC FETs. Therefore, low SB or Ohmic contact is highly preferred for approaching the intrinsic characteristics of the 2DSC channel. In this review, we systematically introduce the recent progress made in theoretical prediction of the SB height (SBH) in the 2DSC FETs and the efforts made both in theory and experiments to achieve low SB contacts. From the comparison between the theoretical and experimentally observed SBHs, the emerging first-principles quantum transport simulation turns out to be the most powerful theoretical tool to calculate the SBH of a 2DSC FET. Finally, we conclude this review from the viewpoints of state-of-the-art electrode designs for 2DSC FETs.
Collapse
Affiliation(s)
- Yangyang Wang
- Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, People's Republic of China
| | - Shiqi Liu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Qiuhui Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ruge Quhe
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Chen Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ying Guo
- School of Physics and Telecommunication Engineering, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, People's Republic of China
| | - Xiuying Zhang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yuanyuan Pan
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jingzhen Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Han Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Lin Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Bowen Shi
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hao Tang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ying Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing 100871, People's Republic of China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Lin Xiao
- Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing 100871, People's Republic of China
| |
Collapse
|
8
|
Degaga GD, Kaur S, Pandey R, Jaszczak JA. First-Principles Study of a MoS 2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite. MATERIALS 2021; 14:ma14071649. [PMID: 33801695 PMCID: PMC8037089 DOI: 10.3390/ma14071649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Vertically stacked, layered van der Waals (vdW) heterostructures offer the possibility to design materials, within a range of chemistries and structures, to possess tailored properties. Inspired by the naturally occurring mineral merelaniite, this paper studies a vdW heterostructure composed of a MoS2 monolayer and a PbS bilayer, using density functional theory. A commensurate 2D heterostructure film and the corresponding 3D periodic bulk structure are compared. The results find such a heterostructure to be stable and possess p-type semiconducting characteristics. Due to the heterostructure's weak interlayer bonding, its carrier mobility is essentially governed by the constituent layers; the hole mobility is governed by the PbS bilayer, whereas the electron mobility is governed by the MoS2 monolayer. Furthermore, we estimate the hole mobility to be relatively high (~106 cm2V-1s-1), which can be useful for ultra-fast devices at the nanoscale.
Collapse
|
9
|
PN/PAs-WSe 2 van der Waals heterostructures for solar cell and photodetector. Sci Rep 2020; 10:17213. [PMID: 33057058 PMCID: PMC7560845 DOI: 10.1038/s41598-020-73152-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 11/08/2022] Open
Abstract
By first-principles calculations, we investigate the geometric stability, electronic and optical properties of the type-II PN-WSe2 and type-I PAs-WSe2 van der Waals heterostructures(vdWH). They are p-type semiconductors with indirect band gaps of 1.09 eV and 1.08 eV based on PBE functional respectively. By applying the external gate field, the PAs-WSe2 heterostructure would transform to the type-II band alignment from the type-I. With the increasing of magnitude of the electric field, two heterostructures turn into the n-type semiconductors and eventually into metal. Especially, PN/PAs-WSe2 vdWH are both high refractive index materials at low frequencies and show negative refractive index at high frequencies. Because of the steady absorption in ultraviolet region, the PAs-WSe2 heterostructure is a highly sensitive UV detector material with wide spectrum. The type-II PN-WSe2 heterostructure possesses giant and broadband absorption in the near-infrared and visible regions, and its solar power conversion efficiency of 13.8% is higher than the reported GaTe–InSe (9.1%), MoS2/p-Si (5.23%) and organic solar cells (11.7%). It does project PN-WSe2 heterostructure a potential for application in excitons-based solar cells.
Collapse
|
10
|
Maniyar A, Choudhary S. Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications. RSC Adv 2020; 10:31730-31739. [PMID: 35518129 PMCID: PMC9056560 DOI: 10.1039/d0ra05810f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Heterostructures of pristine black phosphorene (P) with transition metal dichalcogenides (TMDs) monolayers of MoS2, MoSe2, MoTe2, WS2, and WSe2 are investigated using density functional theory based simulations. The results suggest that individual MoS2, MoSe2, MoTe2, WS2, WSe2, and black phosphorene have high absorption in some portions of the visible region (∼390–430 nm) and in the entire ultraviolet (UV) region. All the heterostructures results into redshift phenomena where absorption peaks are seen to shift to lower energies of the spectrum. The absorption coefficient is seen to increase with the wavelength and appears to be shifted towards the red end of the spectrum. High absorption is also observed in the entire visible region (λ ∼ 410 to 780 nm) of the spectrum for all heterostructures. This high absorption in the desired visible range may find many potential applications for the heterostructure, such as in the fabrication of optoelectronic devices and solar cells. The refractive index and dielectric constant of the heterostructure are also calculated and are found to be in line with trends in dielectric constant. Furthermore, it is observed that most of the resultant heterostructures have type-II band alignment which is ideal for solar energy conversion and optoelectronic applications. Heterostructures of pristine black phosphorene (P) with transition metal dichalcogenide (TMD) monolayers of MoS2, MoSe2, MoTe2, WS2, and WSe2 are investigated using density functional theory based simulations.![]()
Collapse
Affiliation(s)
- Ashraf Maniyar
- National Institute of Technology Kurukshetra India +917206550867
| | | |
Collapse
|
11
|
Vo DD, Idrees M, Pham VT, Vu TV, Nguyen ST, Phuc HV, Hieu NN, Binh NT, Amin B, Nguyen CV. Electronic structure and optical performance of PbI2/SnSe2 heterostructure. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Jakhar M, Singh J, Kumar A, Tankeshwar K. Pressure and electric field tuning of Schottky contacts in PdSe 2/ZT-MoSe 2 van der Waals heterostructure. NANOTECHNOLOGY 2020; 31:145710. [PMID: 31791033 DOI: 10.1088/1361-6528/ab5de1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A two-dimensional van der Waals (vdW) heterostructure (PdSe2/ZT-MoSe2) has been investigated through vdW corrected density functional theory. ZT-MoSe2 acts as a Dirac material with an anisotropic Dirac cone and variable Fermi velocity (0.52-1.91 × 105 ms-1). The intrinsic Schottky barrier height can be effectively tuned by applying external pressure and an electric field to the heterostructure. The p-type Schottky barrier transforms into a p-type ohmic contact at pressure P ≈ 16 GPa. A positive electric field induces p-type ohmic contact while a negative electric field results in the transition from p-type Schottky contact to n-type Schottky contact, and finally to n-type ohmic contact at the higher values of the field. Moreover, the external positive (negative) electric field induces n-type (p-type) doping of ZT-MoSe2 in the heterostructure and remarkably controls the charge carrier concentration. Our results demonstrate that controlling the external pressure and electric field in a PdSe2/ZT-MoSe2 heterostructure can result in an unprecedented opportunity for the design of high-performance nanodevices.
Collapse
Affiliation(s)
- Mukesh Jakhar
- Department of Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | | | | | | |
Collapse
|
13
|
Liao C, Zhao Y, Ouyang G. Strain-Modulated Band Engineering in Two-Dimensional Black Phosphorus/MoS 2 van der Waals Heterojunction. ACS OMEGA 2018; 3:14641-14649. [PMID: 31458144 PMCID: PMC6644261 DOI: 10.1021/acsomega.8b01767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
We investigate the band shift and band alignment of two-dimensional (2D) black phosphorus (BP)/MoS2 van der Waals heterojunction (vdW HJ) via uniaxial strain in terms of first-principles calculations and atomic-bond-relaxation method. We find that the band gap of 2D BP/MoS2 HJ decreases linearly with applied tensile strain and Mo-S bond breaks down at 10% tensile strain. Meanwhile, the band gap slightly increases and then monotonically decreases under compressive strain and there appears a semiconductor-to-metal transition at -11 and -12% strain in the y and x directions, respectively. Moreover, 2D BP/MoS2 HJ maintains type-II band alignment for strain applied in the y direction whereas type-II/I band transition appears at -5% strain in the x direction. Moreover, we propose an analytical model to address the strain-modulated band engineering of 2D BP/MoS2 vdW HJ at the atomic level. Our results suggest a promising way to explain the intrinsic mechanism of strain engineering and manipulate the electronic properties of 2D vdW HJs.
Collapse
|
14
|
Bano A, Pandey DK, Modi A, Gaur NK. MoB 2 Driven Metallic Behavior and Interfacial Charge Transport Mechanism in MoS 2/MoB 2 Heterostructure: A First-Principles Study. Sci Rep 2018; 8:14444. [PMID: 30262827 PMCID: PMC6160431 DOI: 10.1038/s41598-018-32850-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
We have performed the density functional theory calculations on heterostructure (HS) of MoS2 and MoB2 monolayers. The aim of this study is to assess the influence of MoB2 on electron transport of adjacent MoS2 layer. In present investigation we predict that the electronic properties of MoS2 monolayer is influenced by 4d-states of Mo in MoB2 monolayer. Whereas, the B atoms of MoB2 and S atoms of MoS2 exhibit overlapping of intermediate atomic orbitals thereby collectively construct the interfacial electronic structure observed to be metallic in nature. From charge density calculations, we have also determine that the charge transfer is taking place at the interface via B-2p and S-3p states. The bonds at the interface are found to be metallic which is also confirmed by adsorption analysis. Thermoelectric performance of this HS is found be in good agreement with available literature. Low Seebeck coefficient and high electrical conductivity further confirms the existence of metallic state of the HS.
Collapse
Affiliation(s)
- Amreen Bano
- Department of Physics, Barkatullah University, Bhopal, 462026, India
| | - Devendra K Pandey
- Department of Physics, Barkatullah University, Bhopal, 462026, India
| | - Anchit Modi
- Department of Physics, Barkatullah University, Bhopal, 462026, India
| | - N K Gaur
- Department of Physics, Barkatullah University, Bhopal, 462026, India.
| |
Collapse
|