1
|
Jana AK, Keskin R, Yaşar F. Molecular Insight into the Effect of HIV-TAT Protein on Amyloid-β Peptides. ACS OMEGA 2024; 9:27480-27491. [PMID: 38947850 PMCID: PMC11209880 DOI: 10.1021/acsomega.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Increased deposition of amyloid-β (Aβ) plaques in the brain is a frequent pathological feature observed in human immunodeficiency virus (HIV)-positive patients. Emerging evidence indicates that HIV regulatory proteins, particularly the transactivator of transcription (TAT) protein, could interact with Aβ peptide, accelerating the formation of Aβ plaques in the brain and potentially contributing to the onset of Alzheimer's disease in individuals with HIV infection. Nevertheless, the molecular mechanisms underlying these processes remain unclear. In the present study, we have used long all-atom molecular dynamics simulations to probe the direct interactions between the TAT protein and Aβ peptide at the molecular level. Sampling over 28.0 μs, our simulations show that TAT protein induces a shift in the Aβ monomer ensemble toward elongated conformations, exposing aggregation-prone regions on the surface and thereby inducing subsequent aggregation. TAT protein also appears to enhance the stability of preformed Aβ fibrils, while increasing the β-sheet content within these fibrils. Our atomistically detailed simulations qualitatively agree with previous in vitro and in vivo studies. Importantly, our simulations identify key interactions between Aβ and the TAT protein that drive the Aβ aggregation process and stabilize the preformed Aβ aggregates, which are particularly challenging to obtain through current experimental techniques.
Collapse
Affiliation(s)
- Asis K. Jana
- Department
of Microbiology and Biotechnology, Sister
Nivedita University, Kolkata 700156, India
| | - Recep Keskin
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| | - Fatih Yaşar
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| |
Collapse
|
2
|
Serebrennikova M, Grafskaia E, Maltsev D, Ivanova K, Bashkirov P, Kornilov F, Volynsky P, Efremov R, Bocharov E, Lazarev V. TriplEP-CPP: Algorithm for Predicting the Properties of Peptide Sequences. Int J Mol Sci 2024; 25:6869. [PMID: 38999985 PMCID: PMC11241344 DOI: 10.3390/ijms25136869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area. While traditional medicinal chemistry methods have been used to develop CPPs, machine learning techniques can speed up and reduce costs in the search for new peptides. A predictive algorithm based on machine learning models was created to identify novel CPP sequences using molecular descriptors using a combination of algorithms like k-nearest neighbors, gradient boosting, and random forest. Some potential CPPs were found and tested for cytotoxicity and penetrating ability. A new low-toxicity CPP was discovered from the Rhopilema esculentum venom proteome through this study.
Collapse
Affiliation(s)
- Maria Serebrennikova
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
| | - Ekaterina Grafskaia
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
| | - Dmitriy Maltsev
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Kseniya Ivanova
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Research Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Pavel Bashkirov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Research Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Fedor Kornilov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Pavel Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Roman Efremov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Eduard Bocharov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Vassili Lazarev
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
| |
Collapse
|
3
|
Williams-Noonan BJ, Kulkarni K, Todorova N, Franceschi M, Wilde C, Borgo MPD, Serpell LC, Aguilar MI, Yarovsky I. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311103. [PMID: 38489817 DOI: 10.1002/adma.202311103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
β-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of β-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent β-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated β3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated β3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated β3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.
Collapse
Affiliation(s)
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Matteo Franceschi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher Wilde
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
4
|
Þorgeirsdóttir DÝ, Andersen JH, Perch-Nielsen M, Møller LH, Grønbæk-Thorsen F, Kolberg HG, Gammelgaard B, Kristensen M. Selenomethionine as alternative label to the fluorophore TAMRA when exploiting cell-penetrating peptides as blood-brain barrier shuttles to better mimic the physicochemical properties of the non-labelled peptides. Eur J Pharm Sci 2023; 183:106400. [PMID: 36750148 DOI: 10.1016/j.ejps.2023.106400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
The cell-penetrating peptides (CPPs) Tat and penetratin are frequently explored as shuttles for drug delivery across the blood-brain barrier (BBB). CPPs are often labelled with fluorophores for analytical purposes, with 5(6)-carboxytetramethylrhodamine (TAMRA) being a popular choice. However, TAMRA labelling affects the physicochemical properties of the resulting fluorophore-CPP construct when compared to the CPP alone. Selenomethionine (MSe) may be introduced as alternative label, which, due to its small size and amino acid nature, likely results in minimal alterations of the peptide physicochemical properties. With this study we compared, head-to-head, the effect of MSe and TAMRA labelling of Tat and penetratin with respect to their physicochemical properties, and investigated effects hereof on brain capillary endothelial cell (BCEC) models. TAMRA labelling positively affected the ability of the peptides to adhere to the cell membranes as well being internalized into the BCECs when compared to MSe labelling. TAMRA labelling of penetratin added toxicity to the BCECs to a higher extent than TAMRA labelling of Tat, whereas MSe labelling did not affect the cellular viability. Both TAMRA and MSe labelling of penetratin decreased the barrier integrity of BCEC monolayers, but not to an extent that improved transport of the paracellular marker 14C-mannitol. In conclusion, MSe labelling of Tat and penetratin adds minimal alterations to the physicochemical properties of these CPPs and their resulting effects on BCECs, and thereby represents a preferred alternative to TAMRA for peptide quantification purposes.
Collapse
Affiliation(s)
- Dagmar Ýr Þorgeirsdóttir
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jeppe Hofman Andersen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Marcus Perch-Nielsen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Laura Hyrup Møller
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Freja Grønbæk-Thorsen
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Hannah Grønbech Kolberg
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Bente Gammelgaard
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Mie Kristensen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
5
|
Revealing the importance of carrier-cargo association in delivery of insulin and lipidated insulin. J Control Release 2021; 338:8-21. [PMID: 34298056 DOI: 10.1016/j.jconrel.2021.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic peptides upon oral administration is highly desired and investigations report that the cell-penetrating peptide (CPP) penetratin and its analogues shuffle and penetramax show potential as carriers to enhance insulin delivery. Exploring this, the specific aim of the present study was to understand the impact that their complexation with a lipidated or non-lipidated therapeutic cargo would have on the delivery, to evaluate the effect of differences in membrane interactions in vitro and in vivo, as well as to deduce the mode of action leading to enhanced delivery. Fundamental biophysical aspects were studied by a range of orthogonal methods. Transepithelial permeation of therapeutic peptide was evaluated using the Caco-2 cell culture model supplemented with epithelial integrity measurements, real-time assessment of the carrier peptide effects on cell viability and on mode of action. Pharmacokinetic and pharmacodynamic (PK/PD) parameters were evaluated following intestinal administration to rats and tissue effects were investigated by histology. The biophysical studies revealed complexation of insulin with shuffle and penetramax, but not with penetratin. This corresponded to enhanced transepithelial permeation of insulin, but not of lipidated insulin, when in physical mixture with shuffle or penetramax. The addition of shuffle and penetramax was associated with a lowering of Caco-2 cell monolayer integrity and viability, where the lowering of cell viability was immediate, but reversible. Insulin delivery in rats was enhanced by shuffle and penetramax and accompanied by a 10-20-fold decrease in blood glucose with immediate effect on the intestinal mucosa. In conclusion, shuffle and penetramax, but not penetratin, demonstrated to be potential candidates as carriers for transmucosal delivery of insulin upon oral administration, and their effect depended on association with both cargo and cell membrane. Interestingly, the present study provides novel mechanistic insight that peptide carrier-induced cargo permeation points towards enhancement via the paracellular route in the tight epithelium. This is different from the anticipated belief being that it is the cell-penetrating capability that facilitate transepithelial cargo permeation via a transcellular route.
Collapse
|
6
|
Kristensen M, Guldsmed Diedrichsen R, Vetri V, Foderà V, Mørck Nielsen H. Increased Carrier Peptide Stability through pH Adjustment Improves Insulin and PTH(1-34) Delivery In Vitro and In Vivo Rather than by Enforced Carrier Peptide-Cargo Complexation. Pharmaceutics 2020; 12:E993. [PMID: 33092079 PMCID: PMC7589992 DOI: 10.3390/pharmaceutics12100993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Oral delivery of therapeutic peptides is hampered by their large molecular size and labile nature, thus limiting their permeation across the intestinal epithelium. Promising approaches to overcome the latter include co-administration with carrier peptides. In this study, the cell-penetrating peptide penetratin was employed to investigate effects of co-administration with insulin and the pharmacologically active part of parathyroid hormone (PTH(1-34)) at pH 5, 6.5, and 7.4 with respect to complexation, enzymatic stability, and transepithelial permeation of the therapeutic peptide in vitro and in vivo. Complex formation between insulin or PTH(1-34) and penetratin was pH-dependent. Micron-sized complexes dominated in the samples prepared at pH-values at which penetratin interacts electrostatically with the therapeutic peptide. The association efficiency was more pronounced between insulin and penetratin than between PTH(1-34) and penetratin. Despite the high degree of complexation, penetratin retained its membrane activity when applied to liposomal structures. The enzymatic stability of penetratin during incubation on polarized Caco-2 cell monolayers was pH-dependent with a prolonged half-live determined at pH 5 when compared to pH 6.5 and 7.4. Also, the penetratin-mediated transepithelial permeation of insulin and PTH(1-34) was increased in vitro and in vivo upon lowering the sample pH from 7.4 or 6.5 to 5. Thus, the formation of penetratin-cargo complexes with several molecular entities is not prerequisite for penetratin-mediated transepithelial permeation a therapeutic peptide. Rather, a sample pH, which improves the penetratin stability, appears to optimize the penetratin-mediated transepithelial permeation of insulin and PTH(1-34).
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
| | - Ragna Guldsmed Diedrichsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, IT-90128 Palermo, Italy;
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (R.G.D.); (V.F.)
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Kristensen M, Kucharz K, Felipe Alves Fernandes E, Strømgaard K, Schallburg Nielsen M, Cederberg Helms HC, Bach A, Ulrikkaholm Tofte-Hansen M, Irene Aldana Garcia B, Lauritzen M, Brodin B. Conjugation of Therapeutic PSD-95 Inhibitors to the Cell-Penetrating Peptide Tat Affects Blood-Brain Barrier Adherence, Uptake, and Permeation. Pharmaceutics 2020; 12:E661. [PMID: 32674358 PMCID: PMC7408072 DOI: 10.3390/pharmaceutics12070661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Novel stroke therapies are needed. Inhibition of the interaction between the postsynaptic density-95 (PSD-95)/disc large/ZO-1 (PDZ) domains of PSD-95 and the N-methyl-D-aspartate (NMDA) receptor has been suggested as a strategy for relieving neuronal damage. The peptides NR2B9c and N-dimer have been designed to hinder this interaction; they are conjugated to the cell-penetrating peptide Tat to facilitate blood-brain barrier (BBB) permeation and neuronal uptake. Tat-N-dimer exhibits 1000-fold better target affinity than Tat-NR2B9c, but the same magnitude of improvement is not observed in terms of therapeutic effect. Differences in BBB permeation by Tat-NR2B9c and Tat-N-dimer may explain this difference, but studies providing a direct comparison of Tat-NR2B9c and Tat-N-dimer are lacking. The aim of the present study was therefore to compare the BBB uptake and permeation of Tat-NR2B9c and Tat-N-dimer. The peptides were conjugated to the fluorophore TAMRA and their chemical stability assessed. Endothelial membrane association and cell uptake, and transendothelial permeation were estimated using co-cultures of primary bovine brain capillary endothelial cells and rat astrocytes. In vivo BBB permeation was demonstrated in mice using two-photon microscopy imaging. Tissue distribution was evaluated in mice demonstrating brain accumulation of TAMRA-Tat (0.4% ID/g), TAMRA-Tat-NR2B9c (0.3% ID/g), and TAMRA-Tat-N-dimer (0.25% ID/g). In conclusion, we demonstrate that attachment of NR2B9c or N-dimer to Tat affects both the chemical stability and the ability of the resulting construct to interact with and permeate the BBB.
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| | - Krzysztof Kucharz
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (K.K.); (M.L.)
| | - Eduardo Felipe Alves Fernandes
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | | | - Hans Christian Cederberg Helms
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Malte Ulrikkaholm Tofte-Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Blanca Irene Aldana Garcia
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (K.K.); (M.L.)
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| |
Collapse
|
8
|
Systematically Exploring Molecular Aggregation and Its Impact on Surface Tension and Viscosity in High Concentration Solutions. Molecules 2020; 25:molecules25071588. [PMID: 32235624 PMCID: PMC7180489 DOI: 10.3390/molecules25071588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
The aggregation structure of dye molecules has a great influence on the properties of dye solutions, especially in high concentration. Here, the dye molecular aggregation structures were investigated systemically in aqueous solutions with high concentration using three reactive dyes (O-13, R-24:1 and R-218). O-13 showed stronger aggregation than R-24:1 and R-218. This is because of the small non-conjugate side chain and its β-linked position on the naphthalene of O-13. Compared with R-218, R-24:1 showed relatively weaker aggregation due to the good solution of R-24:1. The change of different aggregate distributions in the solutions were also investigated by splitting the absorption curves. Moreover, it is found that the surface tension of solutions can be modified by the combined effect of both aggregation and the position of the hydrophilic group, which, however, also have an effect on viscosity. This exploration will provide guidance for the study of high concentration solutions.
Collapse
|
9
|
Reid LM, Verma CS, Essex JW. The role of molecular simulations in understanding the mechanisms of cell-penetrating peptides. Drug Discov Today 2019; 24:1821-1835. [DOI: 10.1016/j.drudis.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/12/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
|
10
|
de Mello LR, Hamley IW, Castelletto V, Garcia BBM, Han SW, de Oliveira CLP, da Silva ER. Nanoscopic Structure of Complexes Formed between DNA and the Cell-Penetrating Peptide Penetratin. J Phys Chem B 2019; 123:8861-8871. [DOI: 10.1021/acs.jpcb.9b05512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ian William Hamley
- Department of Chemistry, University of Reading, Reading RGD 6AD, United Kingdom
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Reading RGD 6AD, United Kingdom
| | | | - Sang Won Han
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | | | | |
Collapse
|
11
|
Temperature Dependence of the Structure and Dynamics of a Dye-Labeled Lipid in a Planar Phospholipid Bilayer: A Computational Study. J Membr Biol 2019; 252:227-240. [PMID: 31332471 DOI: 10.1007/s00232-019-00081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
Fluorescent probes are widely employed to label lipids for the investigation of structural and dynamic properties of model and cell membranes through optical microscopy techniques. Although the effect of tagging a lipid with an organic dye is generally assumed to be negligible, optically modified lipids can nonetheless affect the local lipid structure and, in turn, the lipid lateral mobility. To better assess this potential issue, all-atom (MD) molecular dynamics simulations have been performed to study structural and dynamic effects in a model DOPC membrane in the presence of a standard Rhodamine B-labeled DOPE lipid (RHB) as a function of temperature, i.e., 293 K, 303 K, and 320 K. As the temperature is increased, we observe similar changes in the structural properties of both pure DOPC and RHB-DOPC lipid bilayers: an increase of the area per lipid, a reduction of the membrane thickness and a decrease of lipid order parameters. The partial density profile of the RHB headgroups and their orientation within the lipid bilayer confirm the amphiphilic nature of the RHB fluorescent moiety, which mainly partitions in the DOPC glycerol backbone region at each temperature. Moreover, at all temperatures, our results on lipid lateral diffusion support a non-neutral role of the dye with respect to the unlabeled lipid mobility, thus suggesting important implications for optical microscopy studies of lipid membranes.
Collapse
|
12
|
Hategan A, Masliah E, Nath A. HIV and Alzheimer's disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J Neurovirol 2019; 25:648-660. [PMID: 31016584 DOI: 10.1007/s13365-019-00736-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
In patients infected with the human immunodeficiency virus (HIV), the HIV-Tat protein may be continually produced despite adequate antiretroviral therapy. As the HIV-infected population is aging, it is becoming increasingly important to understand how HIV-Tat may interact with proteins such as amyloid β and Tau which accumulate in the aging brain and eventually result in Alzheimer's disease. In this review, we examine the in vivo data from HIV-infected patients and animal models and the in vitro experiments that show how protein complexes between HIV-Tat and amyloid β occur through novel protein-protein interactions and how HIV-Tat may influence the pathways for amyloid β production, degradation, phagocytosis, and transport. HIV-Tat may also induce Tau phosphorylation through a cascade of cellular processes that lead to the formation of neurofibrillary tangles, another hallmark of Alzheimer's disease. We also identify gaps in knowledge and future directions for research. Available evidence suggests that HIV-Tat may accelerate Alzheimer-like pathology in patients with HIV infection which cannot be impacted by current antiretroviral therapy.
Collapse
Affiliation(s)
- Alina Hategan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10; Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute of Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10; Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Jan Akhunzada M, D'Autilia F, Chandramouli B, Bhattacharjee N, Catte A, Di Rienzo R, Cardarelli F, Brancato G. Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Sci Rep 2019; 9:1508. [PMID: 30728410 PMCID: PMC6365552 DOI: 10.1038/s41598-018-37814-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Lipid lateral diffusion in membrane bilayers is a fundamental process exploited by cells to enable complex protein structural and dynamic reorganizations. For its importance, lipid mobility in both cellular and model bilayers has been extensively investigated in recent years, especially through the application of time-resolved, fluorescence-based, optical microscopy techniques. However, one caveat of fluorescence techniques is the need to use dye-labeled variants of the lipid of interest, thus potentially perturbing the structural and dynamic properties of the native species. Generally, the effect of the dye/tracer molecule is implicitly assumed to be negligible. Nevertheless, in view of the widespread use of optically modified lipids for studying lipid bilayer dynamics, it is highly desirable to well assess this point. Here, fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations have been combined together to uncover subtle structural and dynamic effects in DOPC planar membranes enriched with a standard Rhodamine-labeled lipid. Our findings support a non-neutral role of the dye-labeled lipids in diffusion experiments, quantitatively estimating a decrease in lipid mobility of up to 20% with respect to the unlabeled species. Moreover, results highlight the existing interplay between dye concentration, lipid lateral diffusion and membrane permeability, thus suggesting possible implications for future optical microscopy studies of biophysical processes occurring at the membrane level.
Collapse
Affiliation(s)
- Muhammad Jan Akhunzada
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126, Pisa, Italy.,Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100, Pisa, Italy
| | | | - Balasubramanian Chandramouli
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126, Pisa, Italy.,Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163, Genova, Italy
| | - Nicholus Bhattacharjee
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126, Pisa, Italy.,Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100, Pisa, Italy
| | - Andrea Catte
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126, Pisa, Italy.,Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100, Pisa, Italy
| | - Roberto Di Rienzo
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via Girolamo Caruso 16, I-56122 Pisa, Italy
| | - Francesco Cardarelli
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126, Pisa, Italy. .,Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100, Pisa, Italy.
| |
Collapse
|
14
|
Najjar K, Erazo-Oliveras A, Mosior JW, Whitlock MJ, Rostane I, Cinclair JM, Pellois JP. Unlocking Endosomal Entrapment with Supercharged Arginine-Rich Peptides. Bioconjug Chem 2017; 28:2932-2941. [PMID: 29065262 DOI: 10.1021/acs.bioconjchem.7b00560] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomal entrapment is a common bottleneck in various macromolecular delivery approaches. Recently, the polycationic peptide dfTAT was identified as a reagent that induces the efficient leakage of late endosomes and, thereby, enhances the penetration of macromolecules into the cytosol of live human cells. To gain further insights into the features that lead to this activity, the role of peptide sequence was investigated. We establish that the leakage activity of dfTAT can be recapitulated by polyarginine analogs but not by polylysine counterparts. Efficiencies of peptide endocytic uptake increase linearly with the number of arginine residues present. In contrast, peptide cytosolic penetration displays a threshold behavior, indicating that a minimum number of arginines is required to induce endosomal escape. Increasing arginine content above this threshold further augments delivery efficiencies. Yet, it also leads to increasing the toxicity of the delivery agents. Together, these data reveal a relatively narrow arginine-content window for the design of optimally active endosomolytic agents.
Collapse
Affiliation(s)
- Kristina Najjar
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - John W Mosior
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Megan J Whitlock
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Ikram Rostane
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Joseph M Cinclair
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
15
|
Jan Akhunzada M, Chandramouli B, Bhattacharjee N, Macchi S, Cardarelli F, Brancato G. The role of Tat peptide self-aggregation in membrane pore stabilization: insights from a computational study. Phys Chem Chem Phys 2017; 19:27603-27610. [DOI: 10.1039/c7cp05103d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Role of Tat peptide self-aggregation to direct transduction in cells is highlighted in a computational study of dimer versus monomer.
Collapse
Affiliation(s)
| | | | | | - Sara Macchi
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- 56127 Pisa
- Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore
- Italy
- Istituto Nazionale di Fisica Nucleare
- I-56100 Pisa
- Italy
| |
Collapse
|