1
|
Crisci L, Coppola F, Petrone A, Rega N. Tuning ultrafast time-evolution of photo-induced charge-transfer states: A real-time electronic dynamics study in substituted indenotetracene derivatives. J Comput Chem 2024; 45:210-221. [PMID: 37706600 DOI: 10.1002/jcc.27231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Photo-induced charge transfer (CT) states are pivotal in many technological and biological processes. A deeper knowledge of such states is mandatory for modeling the charge migration dynamics. Real-time time-dependent density functional theory (RT-TD-DFT) electronic dynamics simulations are employed to explicitly observe the electronic density time-evolution upon photo-excitation. Asymmetrically substituted indenotetracene molecules, given their potential application as n-type semiconductors in organic photovoltaic materials, are here investigated. Effects of substituents with different electron-donating characters are analyzed in terms of the overall electronic energy spacing and resulting ultrafast CT dynamics through linear response (LR-)TD-DFT and RT-TD-DFT based approaches. The combination of the computational techniques here employed provided direct access to the electronic density reorganization in time and to its spatial and rational representation in terms of molecular orbital occupation time evolution. Such results can be exploited to design peculiar directional charge dynamics, crucial when photoactive materials are used for light-harvesting applications.
Collapse
Affiliation(s)
- Luigi Crisci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | | | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, Naples, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, Naples, Italy
| |
Collapse
|
2
|
Buttarazzi E, Perrella F, Rega N, Petrone A. Watching the Interplay between Photoinduced Ultrafast Charge Dynamics and Nuclear Vibrations. J Chem Theory Comput 2023; 19:8751-8766. [PMID: 37991892 PMCID: PMC10720350 DOI: 10.1021/acs.jctc.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Here is presented the ultrafast hole-electron dynamics of photoinduced metal to ligand charge-transfer (MLCT) states in a Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), a photoactive molecule employed in dye sensitized solar cells. Via cutting-edge computational techniques, a tailored computational protocol is here presented and developed to provide a detailed analysis of the electronic manifold coupled with nuclear vibrations to better understand the nonradiative pathways and the resulting overall dye performances in light-harvesting processes (electron injection). Thus, the effects of different vibrational modes were investigated on both the electronic levels and charge transfer dynamics through a theoretical-computational approach. First, the linear response time-dependent density functional (LR-TDDFT) formalism was employed to characterize excitation energies and spacing among electronic levels (the electronic layouts). Then, to understand the ultrafast (femtosecond) charge dynamics on the molecular scale, we relied on the nonperturbative mean-field quantum electronic dynamics via real-time (RT-) TDDFT. Three vibrational modes were selected, representative for collective nuclear movements that can have a significant influence on the electronic structure: two involving NCS- ligands and one involving dcbpy ligands. As main results, we observed that such MLCT states, under vibrational distortions, are strongly affected and a faster interligand electron transfer mechanism is observed along with an increasing MLCT character of the adiabatic electronic states approaching closer in energy due to the vibrations. Such findings can help both in providing a molecular picture of multidimensional vibro-electronic spectroscopic techniques, used to characterize ultrafast coherent and noncoherent dynamics of complex systems, and to improve dye performances with particular attention to the study of energy or charge transport processes and vibronic couplings.
Collapse
Affiliation(s)
- Edoardo Buttarazzi
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
| | - Fulvio Perrella
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Nadia Rega
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
3
|
Fang H, Wilhelm MJ, Kuhn DL, Zander Z, Dai HL, Petersson GA. The low-lying electronic states and ultrafast relaxation dynamics of the monomers and J-aggregates of meso-tetrakis (4-sulfonatophenyl)-porphyrins. J Chem Phys 2023; 159:154302. [PMID: 37846956 DOI: 10.1063/5.0174368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
The electronic and vibrational spectra of the meso-tetrakis(4-sulfonatophenyl)-porphyrins (TSPP) have been studied computationally using the PFD-3B functional with time-dependent density functional theory for the excited states. The calculated UV-vis absorption and emission spectra in aqueous solution are in excellent agreement with the experimental measurements of both H2TSPP-4 (monomer) at high pH and H4TSPP-2 (forming J-aggregate) at low pH. Moreover, our calculations reveal an infrared absorption at 1900 cm-1 in the singlet and triplet excited states that is absent in the ground state, which is chosen as a probe for transient IR absorption spectroscopy to investigate the vibrational dynamics of the excited state. Specifically, the S2 to S1 excited state internal conversion process time, the S1 state vibrational relaxation time, and the lifetime of the S1 excited electronic state are all quantitatively deduced.
Collapse
Affiliation(s)
- Hui Fang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Michael J Wilhelm
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Danielle L Kuhn
- U.S. Army DEVCOM Chemical Biological Center, Research and Operations, Aberdeen Proving Ground, Aberdeen, Maryland 21010, USA
| | - Zachary Zander
- U.S. Army DEVCOM Chemical Biological Center, Research and Operations, Aberdeen Proving Ground, Aberdeen, Maryland 21010, USA
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - George A Petersson
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
4
|
Zhu H, Zhang D, Feng E, Sheng X. Effects of aggregation on the structures and excited-state absorption for zinc phthalocyanine. Phys Chem Chem Phys 2023; 25:10278-10287. [PMID: 36883359 DOI: 10.1039/d2cp04372f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the present paper, the aggregated structures of zinc phthalocyanine (ZnPc) have been investigated by considering its dimers and trimers. Based on the density functional theory calculations, two stable conformations are obtained for the ZnPc dimer and trimer, respectively. The IGMH (independent gradient model based on the Hirshfeld partition of molecular density) analysis reveals that the π-π interaction between the ZnPc molecules causes the aggregation. Normally, stacked structures with a slight displacement are favorable for aggregation. In addition, the planar structure of the ZnPc monomer is largely maintained in the aggregated conformations. For the presently obtained structures, the first singlet excited state absorption (ESA) spectra of these aggregated conformations of ZnPc were calculated based on the linear-response time-dependent density functional theory (LR-TDDFT), which has been well applied by our group. The results of the excited state absorption spectra reveal that the aggregation causes the ESA band to blue shift compared to the ZnPc monomer. By using the conventional description of the interaction between monomer transition dipoles, this blue shift is elucidated by the side-by-side transition dipole moments in the constituted monomers. The present results for the ESA combined with the previously reported results for ground state absorption (GSA) will provide guidelines to tune the window of the optical-limiting effect for the ZnPc based materials.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Danyang Zhang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Eryin Feng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xiaowei Sheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| |
Collapse
|
5
|
Perrella F, Li X, Petrone A, Rega N. Nature of the Ultrafast Interligands Electron Transfers in Dye-Sensitized Solar Cells. JACS AU 2023; 3:70-79. [PMID: 36711100 PMCID: PMC9875239 DOI: 10.1021/jacsau.2c00556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Charge-transfer dynamics and interligand electron transfer (ILET) phenomena play a pivotal role in dye-sensitizers, mostly represented by the Ru-based polypyridyl complexes, for TiO2 and ZnO-based solar cells. Starting from metal-to-ligand charge-transfer (MLCT) excited states, charge dynamics and ILET can influence the overall device efficiency. In this letter, we focus on N34- dye ( [Ru(dcbpy)2(NCS)2]4-, dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) to provide a first direct observation with high time resolution (<20 fs) of the ultrafast electron exchange between bpy-like ligands. ILET is observed in water solution after photoexcitation in the ∼400 nm MLCT band, and assessment of its ultrafast time-scale is here given through a real-time electronic dynamics simulation on the basis of state-of-the-art electronic structure methods. Indirect effects of water at finite temperature are also disentangled by investigating the system in a symmetric gas-phase structure. As main result, remarkably, the ILET mechanism appears to be based upon a purely electronic evolution among the dense, experimentally accessible, MLCT excited states manifold at ∼400 nm, which rules out nuclear-electronic couplings and proves further the importance of the dense electronic manifold in improving the efficiency of dye sensitizers in solar cell devices.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
6
|
Perrella F, Petrone A, Rega N. Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments. J Chem Theory Comput 2023; 19:626-639. [PMID: 36602443 PMCID: PMC9878732 DOI: 10.1021/acs.jctc.2c00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it. A designed protocol of analysis for real-time electronic dynamics to be applied to time evolving electronic density related properties to characterize both in time and in space CT dynamics in complex systems is here introduced and validated, proposing easy to be read cross-correlation maps. As case studies to test such tools, we present the photoinduced charge-transfer electronic dynamics of 5-benzyluracil, a mimic of nucleic acid/protein interactions, and the metal-to-ligand charge-transfer electronic dynamics in water solution of [Ru(dcbpy)2(NCS)2]4-, dcbpy = (4,4'-dicarboxy-2,2'-bipyridine), or "N34-", a dye sensitizer for solar cells. Electrostatic and explicit ab initio treatment of solvent molecules have been compared in the latter case, revealing the importance of the accurate modeling of mutual solute-solvent polarization on CT kinetics. We observed that explicit quantum mechanical treatment of solvent slowed down the charge carriers mobilities with respect to the gas-phase. When all water molecules were modeled instead as simpler embedded point charges, the electronic dynamics appeared enhanced, with a reduced hole-electron distance and higher mean velocities due to the close fixed charges and an artificially increased polarization effect. Such analysis tools and the presented case studies can help to unveil the influence of the electronic manifold, as well as of the finite temperature-induced structural distortions and the environment on the ultrafast charge motions.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
7
|
Yu W, Zheng S. A computational investigation about the effect of metal substitutions on the electronic spectra of porphyrin donors in the visible and near infrared regions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121676. [PMID: 35921749 DOI: 10.1016/j.saa.2022.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Porphyrin compounds have unique advantages because of their wide absorption range (about 300-1000 nm) and good planarity. At present, the effects of metal substitutions of porphyrin compounds on their photovoltaic properties are still not clear. In this paper, we have systematically modelled a series of porphyrin donors MP-TBO (M = 2H, Mg, Cu, Fe, Co, Zn and Ni), in which ZnP-TBO has been experimentally synthesized and the power conversation efficiency of organic solar cell based on it is up to 12.08 %. The photovoltaic properties of these MP-TBO molecules have been investigated via density functional theory (DFT) and time-dependent DFT. We find that CoP-TBO and NiP-TBO both have worse planarity and smaller dipole moments than other compounds. The electronic absorption spectra of these porphyrin donors all show three main absorption peaks. However, metal substitutions blue-shift the wavelength of absorption peaks and lower total absorption strength in the visible and near-infrared regions. Finally, we find that MgP-TBO and H2P-TBO seem to be potential donors because both have more red-shifted wavelength of absorption peaks and higher absorption strength than other metal substitutions.
Collapse
Affiliation(s)
- Wenyang Yu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy, Southwest University, Chongqing, China
| | - Shaohui Zheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Carter-Fenk K, Cunha LA, Arias-Martinez JE, Head-Gordon M. Electron-Affinity Time-Dependent Density Functional Theory: Formalism and Applications to Core-Excited States. J Phys Chem Lett 2022; 13:9664-9672. [PMID: 36215404 DOI: 10.1021/acs.jpclett.2c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lack of particle-hole attraction and orbital relaxation within time-dependent density functional theory (TDDFT) lead to extreme errors in the prediction of K-edge X-ray absorption spectra (XAS). We derive a linear-response formalism that uses optimized orbitals of the n - 1-electron system as the reference, building orbital relaxation and a proper hole into the initial density. Our approach is an exact generalization of the static-exchange approximation that ameliorates the particle-hole interaction error associated with the adiabatic approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical performance of just 0.5 eV root-mean-square error and the same computational scaling as TDDFT under the core-valence separation approximation, we anticipate that this approach will be of great utility in XAS calculations of large systems.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
9
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
10
|
Lopes J, Machado A, Batista A, Araujo P, Barbosa Neto N. Protonation, exciplex, and evidence of aggregate formation in meso-tetra(4-pyridyl) porphyrin triggered by excited-state absorption. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Fedotov DA, Paul AC, Koch H, Santoro F, Coriani S, Improta R. Excited state absorption of DNA bases in the gas phase and in chloroform solution: a comparative quantum mechanical study. Phys Chem Chem Phys 2022; 24:4987-5000. [PMID: 35142309 DOI: 10.1039/d1cp04340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We study the excited state absorption (ESA) properties of the four DNA bases (thymine, cytosine, adenine, and guanine) by different single reference quantum mechanical methods, namely, equation of motion coupled cluster singles and doubles (EOM-CCSD), singles, doubles and perturbative triples (EOM-CC3), and time-dependent density functional theory (TD-DFT), with the long-range corrected CAM-B3LYP functional. Preliminary results at the Tamm-Dancoff (TDA) CAM-B3LYP level using the maximum overlap method (MOM) are reported for thymine. In the gas phase, the three methods predict similar One Photon Absorption (OPA) spectra, which are consistent with the experimental results and with the most accurate computational studies available in the literature. The ESA spectra are then computed for the ππ* states (one for pyrimidine, two for purines) associated with the lowest-energy absorption band, and for the close-lying nπ* state. The EOM-CC3, EOM-CCSD and CAM-B3LYP methods provide similar ESA spectral patterns, which are also in qualitative agreement with literature RASPT2 results. Once validated in the gas phase, TD-CAM-B3LYP has been used to compute the ESA in chloroform, including solvent effects by the polarizable continuum model (PCM). The predicted OPA and ESA spectra in chloroform are very similar to those in the gas phase, most of the bands shifting by less than 0.1 eV, with a small increase of the intensities and a moderate destabilization of the nπ* state. Finally, ESA spectra have been computed from the minima of the lowest energy ππ* state, and found in line with the available experimental transient absorption spectra of the nucleosides in solution, providing further validation of our computational approach.
Collapse
Affiliation(s)
- Daniil A Fedotov
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Alexander C Paul
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126, Pisa, Italy.
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, I-56124 Pisa, Italy.
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. .,Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, I-80134 Napoli, Italy.
| |
Collapse
|
12
|
Zhang D, Zhu H, Wang C, Kang SY, Zhou Y, Sheng X. Three-Photon-Induced Singlet Excited-State Absorption for the Tunable Ultrafast Optical-Limiting in Distyrylbenzene: A First-Principles Study. Phys Chem Chem Phys 2022; 24:16852-16861. [DOI: 10.1039/d2cp01753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground and first singlet excited state absorption in distyrylbenzene(DSB) are simulated based on the linear-response time dependent density functional theory(LR-TDDFT). It is found that distyrylbenzene shows strong reverse saturable...
Collapse
|
13
|
Linear and quadratic response TDDFT methods for the excited-state absorption in oligofluorenes. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Segatta F, Russo M, Nascimento DR, Presti D, Rigodanza F, Nenov A, Bonvicini A, Arcioni A, Mukamel S, Maiuri M, Muccioli L, Govind N, Cerullo G, Garavelli M. In Silico Ultrafast Nonlinear Spectroscopy Meets Experiments: The Case of Perylene Bisimide Dye. J Chem Theory Comput 2021; 17:7134-7145. [PMID: 34676761 PMCID: PMC8582250 DOI: 10.1021/acs.jctc.1c00570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Spectroscopy simulations are of paramount importance for the interpretation of experimental electronic spectra, the disentangling of overlapping spectral features, and the tracing of the microscopic origin of the observed signals. Linear and nonlinear simulations are based on the results drawn from electronic structure calculations that provide the necessary parameterization of the molecular systems probed by light. Here, we investigate the applicability of excited-state properties obtained from linear-response time-dependent density functional theory (TDDFT) in the description of nonlinear spectra by employing the pseudowavefunction approach and compare them with benchmarks from highly accurate RASSCF/RASPT2 calculations and with high temporal resolution experimental results. As a test case, we consider the prediction of femtosecond transient absorption and two-dimensional electronic spectroscopy of a perylene bisimide dye in solution. We find that experimental signals are well reproduced by both theoretical approaches, showing that the computationally cheaper TDDFT can be a suitable option for the simulation of nonlinear spectroscopy of molecular systems that are too large to be treated with higher-level RASSCF/RASPT2 methods.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Mattia Russo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Daniel R. Nascimento
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Davide Presti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Francesco Rigodanza
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via
F. Marzolo, Padova I-35131, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Andrea Bonvicini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Alberto Arcioni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Margherita Maiuri
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Luca Muccioli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| |
Collapse
|
15
|
Kochman MA, Durbeej B, Kubas A. Simulation and Analysis of the Transient Absorption Spectrum of 4-( N, N-Dimethylamino)benzonitrile (DMABN) in Acetonitrile. J Phys Chem A 2021; 125:8635-8648. [PMID: 34550700 PMCID: PMC8503879 DOI: 10.1021/acs.jpca.1c06166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/03/2021] [Indexed: 12/17/2022]
Abstract
4-(N,N-Dimethylamino)benzonitrile (DMABN) is a well-known model compound for dual fluorescence-in sufficiently polar solvents, it exhibits two distinct fluorescence emission bands. The interpretation of its transient absorption (TA) spectrum in the visible range is the subject of a long-standing controversy. In the present study, we resolve this issue by calculating the TA spectrum on the basis of nonadiabatic molecular dynamics simulations. An unambiguous assignment of spectral signals to specific excited-state structures is achieved by breaking down the calculated spectrum into contributions from twisted and nontwisted molecular geometries. In particular, the much-discussed excited-state absorption band near 1.7 eV (ca. 700 nm) is attributed to the near-planar locally excited (LE) minimum on the S1 state. On the technical side, our study demonstrates that the second-order approximate coupled cluster singles and doubles (CC2) method can be used successfully to calculate the TA spectra of moderately large organic molecules, provided that the system in question does not approach a crossing between the lowest excited state and the singlet ground state within the time frame of the simulation.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Bo Durbeej
- Division
of Theoretical Chemistry, Department of Physics, Chemistry and Biology
(IFM), Linköping University, 581 83 Linköping, Sweden
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
16
|
Lacombe L, Maitra NT. Minimizing the Time-Dependent Density Functional Error in Ehrenfest Dynamics. J Phys Chem Lett 2021; 12:8554-8559. [PMID: 34464148 DOI: 10.1021/acs.jpclett.1c02020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Simulating electron-ion dynamics using time-dependent density functional theory within an Ehrenfest dynamics scheme can be done in two ways that are in principle exact and identical: propagating time-dependent electronic Kohn-Sham equations or propagating electronic coefficients on surfaces obtained from linear-response. We show here that using an approximate functional leads to qualitatively different dynamics in the two approaches. We argue that the latter is more accurate because the functionals are evaluated on domains close to the ground state where currently used approximations perform better. We demonstrate this on an exactly solvable model of charge transfer and discuss implications for time-resolved spectroscopy.
Collapse
Affiliation(s)
- Lionel Lacombe
- Department of Physics, Rutgers University, Newark 07102, New Jersey United States
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark 07102, New Jersey United States
| |
Collapse
|
17
|
Golesorkhi B, Taarit I, Bolvin H, Nozary H, Jiménez JR, Besnard C, Guénée L, Fürstenberg A, Piguet C. Molecular light-upconversion: we have had a problem! When excited state absorption (ESA) overcomes energy transfer upconversion (ETU) in Cr(III)/Er(III) complexes. Dalton Trans 2021; 50:7955-7968. [PMID: 33929478 PMCID: PMC8204332 DOI: 10.1039/d1dt01079d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nine-coordinate [ErN9] or [ErN3O6] chromophores found in triple helical [Er(L)3]3+ complexes (L corresponds to 2,2′,6′,2′′-terpyridine (tpy), 2,6-(bisbenzimidazol-2-yl)pyridine (bzimpy), 2,6-diethylcarboxypyridine (dpa-ester) or 2,6-diethylcarboxamidopyridine (dpa-diamide) derivatives), [Er(dpa)3]3− (dpa is the 2,6-dipicolinate dianion) and [GaErGa(bpb-bzimpy)3]9+ (bpb-bzimpy is 2,6-bis((pyridin-2-benzimidazol-5-yl)methyl-(benzimidazol-2-yl))pyridine) exhibit NIR (excitation at 801 nm) into visible (emission at 542 nm) linear light upconversion processes in acetonitrile at room temperature. The associated quantum yields 5.5(6) × 10−11 ≤ ϕuptot(ESA) ≤ 1.7(2) × 10−9 appear to be 1–3 orders of magnitude larger than those predicted by the accepted single-center excited-state absorption mechanism (ESA). Switching to the alternative energy transfer upconversion mechanism (ETU), which operates in multi-centers [CrErCr(bpb-bzimpy)3]9+, leads to an improved quantum yield of ϕuptot(ETU) = 5.8(6) × 10−8, but also to an even larger discrepancy by 4–6 orders of magnitude when compared with theoretical models. All photophysical studies point to Er(4I13/2) as being the only available ‘long-lived’ (1.8 ≤ τ ≤ 6.3 μs) and emissive excited state, which works as an intermediate relay for absorbing the second photon, but with an unexpected large cross-section for an intrashell 4f → 4f electronic transition. With this in mind, the ETU mechanism, thought to optimize upconversion via intermetallic Cr → Er communication in [CrErCr(bpb-bzimpy)3]9+, is indeed not crucial and the boosted associated upconversion quantum yield is indebted to the dominant contribution of the single-center erbium ESA process. This curious phenomenon is responsible for the successful implementation of light upconversion in molecular coordination complexes under reasonable light power intensities, which paves the way for applications in medicine and biology. Its origin could be linked with the presence of metal–ligand bonding. Near-infrared to visible molecular upconversion exhibits quantum yields which are 2–6 orders of magnitude larger than those modeled with the accepted linear excited state absorption (ESA) or energy transfer (ETU) mechanisms: we have had a problem!![]()
Collapse
Affiliation(s)
- Bahman Golesorkhi
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Inès Taarit
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, F-31062 Toulouse, France.
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Alexandre Fürstenberg
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland. and Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
18
|
Nascimento DR, Biasin E, Poulter BI, Khalil M, Sokaras D, Govind N. Resonant Inelastic X-ray Scattering Calculations of Transition Metal Complexes Within a Simplified Time-Dependent Density Functional Theory Framework. J Chem Theory Comput 2021; 17:3031-3038. [PMID: 33909424 DOI: 10.1021/acs.jctc.1c00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a time-dependent density functional theory (TDDFT) approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state in the context of 4d transition metal systems. These quantities are the necessary ingredients to solve the Kramers-Heisenberg (KH) equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where the solutions of a TDDFT calculation can be used to construct excited-state wavefunctions, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. Thus, the present approach bypasses the need to solve the costly TDDFT quadratic-response equations. We illustrate the applicability of the method to 4d transition metal molecular complexes by calculating the 2p4d RIXS maps of three representative ruthenium complexes and comparing them to experimental results. The method can capture all the experimental features in all three complexes to allow the assignment of the experimental peaks, with relative energies correct to within ∼0.6 eV at the cost of two independent TDDFT calculations.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dimosthenis Sokaras
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Guandalini A, Cocchi C, Pittalis S, Ruini A, Rozzi CA. Nonlinear light absorption in many-electron systems excited by an instantaneous electric field: a non-perturbative approach. Phys Chem Chem Phys 2021; 23:10059-10069. [PMID: 33870971 DOI: 10.1039/d0cp04958a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applications of low-cost non-perturbative approaches in real time, such as time-dependent density functional theory, for the study of nonlinear optical properties of large and complex systems are gaining increasing popularity. However, their assessment still requires the analysis and understanding of elementary dynamical processes in simple model systems. Motivated by the aim of simulating optical nonlinearities in molecules, here exemplified by the case of the quaterthiophene oligomer, we investigate light absorption in many-electron interacting systems beyond the linear regime by using a single broadband impulse of an electric field; i.e. an electrical impulse in the instantaneous limit. We determine non-pertubatively the absorption cross section from the Fourier transform of the time-dependent induced dipole moment, which can be obtained from the time evolution of the wavefunction. We discuss the dependence of the resulting cross section on the magnitude of the impulse and we highlight the advantages of this method in comparison with perturbation theory by working on a one-dimensional model system for which numerically exact solutions are accessible. Thus, we demonstrate that the considered non-pertubative approach provides us with an effective tool for investigating fluence-dependent nonlinear optical excitations.
Collapse
Affiliation(s)
- Alberto Guandalini
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy. .,Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213A, I-41125 Modena, Italy
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, D-12489 Berlin, Germany.,Physics Department, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
| | - Stefano Pittalis
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy.
| | - Alice Ruini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213A, I-41125 Modena, Italy
| | | |
Collapse
|
20
|
Fedotov DA, Paul AC, Posocco P, Santoro F, Garavelli M, Koch H, Coriani S, Improta R. Excited-State Absorption of Uracil in the Gas Phase: Mapping the Main Decay Paths by Different Electronic Structure Methods. J Chem Theory Comput 2021; 17:1638-1652. [PMID: 33529532 DOI: 10.1021/acs.jctc.0c01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a computational study of the one-photon and excited-state absorption (ESA) from the two lowest energy excited states of uracil in the gas phase: an nπ* dark state (1n) and the lowest energy bright ππ* state (1π). The predictions of six different linear response electronic structure methods, namely, TD-CAM-B3LYP, EOM-CCSD, EOM-CC3, ADC(2), ADC(2)-x, and ADC(3) are critically compared. In general, the spectral shapes predicted by TD-CAM-B3LYP, EOM-CCSD, EOM-CC3, and ADC(3) are fairly similar, though the quality of TD-CAM-B3LYP slightly deteriorates in the high-energy region. By computing the spectra at some key structures on different potential energy surfaces (PES), that is, the Franck-Condon point, the 1n minimum, and structures representative of different regions of the 1π PES, we obtain important insights into the shift of the ESA spectra, following the motion of the wavepacket on the excited-state PES. Though 1π has larger ESA than 1n, some spectral regions are dominated by these latter signals. Aside from its methodological interest, we thus obtain interesting indications to interpret transient absorption spectra to disentangle the photoactivated dynamics of nucleobases.
Collapse
Affiliation(s)
- Daniil A Fedotov
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Alexander C Paul
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Paolo Posocco
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Marco Garavelli
- Department of Industrial Chemistry "Toso Montanari", Università degli Studi di Bologna, I-40126 Bologna, Italy
| | - Henrik Koch
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa, Italy
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark.,Department of Chemistry, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
| |
Collapse
|
21
|
Li X, Govind N, Isborn C, DePrince AE, Lopata K. Real-Time Time-Dependent Electronic Structure Theory. Chem Rev 2020; 120:9951-9993. [DOI: 10.1021/acs.chemrev.0c00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christine Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Wang C, Shao J, Chen F, Sheng X. Excited-state absorption for zinc phthalocyanine from linear-response time-dependent density functional theory. RSC Adv 2020; 10:28066-28074. [PMID: 35519113 PMCID: PMC9055825 DOI: 10.1039/d0ra01612h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
The mechanism for zinc phthalocyanine (ZnPc) showing optical-limiting character is related to the first singlet excited-state absorption (ESA). Two distinct band peaks in this ESA spectrum (1.97 eV and 2.56 eV) were observed in experiments. However, the origin of the absorption is not well understood. In the present work, we perform accurate quantum mechanical calculations and analysis of the absorption of ZnPc in the first singlet excited state. It is found that the transitions of S1 → S3 and S1 → S24 are the origin of the first and second band peaks, respectively. Charge transfer character is observed between the edges and central parts of ZnPc for those two transitions, but occurs in opposite directions. It is gratifying to note that the absorption can be modified smoothly through the substitution of nitrogen atoms in ZnPc with methyne or benzene rings. The aggregation phenomenon is also investigated with ZnPc dimers. The present calculations show that the absorptions of two ZnPc molecules with cofacially stacked and slightly shifted cofacially stacked configurations both result in an obvious blueshift compared with the zinc phthalocyanine monomer. The present observations may be utilized in tuning the optical-limiting character of ZnPc.
Collapse
Affiliation(s)
- Chunrui Wang
- State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 China
| | - Junfeng Shao
- State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 China
| | - Fei Chen
- State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 China
| | - Xiaowei Sheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University Wuhu 241000 Anhui China
| |
Collapse
|
23
|
Aprà E, Bylaska EJ, de Jong WA, Govind N, Kowalski K, Straatsma TP, Valiev M, van Dam HJJ, Alexeev Y, Anchell J, Anisimov V, Aquino FW, Atta-Fynn R, Autschbach J, Bauman NP, Becca JC, Bernholdt DE, Bhaskaran-Nair K, Bogatko S, Borowski P, Boschen J, Brabec J, Bruner A, Cauët E, Chen Y, Chuev GN, Cramer CJ, Daily J, Deegan MJO, Dunning TH, Dupuis M, Dyall KG, Fann GI, Fischer SA, Fonari A, Früchtl H, Gagliardi L, Garza J, Gawande N, Ghosh S, Glaesemann K, Götz AW, Hammond J, Helms V, Hermes ED, Hirao K, Hirata S, Jacquelin M, Jensen L, Johnson BG, Jónsson H, Kendall RA, Klemm M, Kobayashi R, Konkov V, Krishnamoorthy S, Krishnan M, Lin Z, Lins RD, Littlefield RJ, Logsdail AJ, Lopata K, Ma W, Marenich AV, Martin Del Campo J, Mejia-Rodriguez D, Moore JE, Mullin JM, Nakajima T, Nascimento DR, Nichols JA, Nichols PJ, Nieplocha J, Otero-de-la-Roza A, Palmer B, Panyala A, Pirojsirikul T, Peng B, Peverati R, Pittner J, Pollack L, Richard RM, Sadayappan P, Schatz GC, Shelton WA, Silverstein DW, Smith DMA, Soares TA, Song D, Swart M, Taylor HL, Thomas GS, Tipparaju V, Truhlar DG, Tsemekhman K, Van Voorhis T, Vázquez-Mayagoitia Á, Verma P, Villa O, Vishnu A, Vogiatzis KD, Wang D, Weare JH, Williamson MJ, Windus TL, Woliński K, Wong AT, Wu Q, Yang C, Yu Q, Zacharias M, Zhang Z, Zhao Y, Harrison RJ. NWChem: Past, present, and future. J Chem Phys 2020; 152:184102. [PMID: 32414274 DOI: 10.1063/5.0004997] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
Collapse
Affiliation(s)
- E Aprà
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - E J Bylaska
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - W A de Jong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N Govind
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - K Kowalski
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Valiev
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - H J J van Dam
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y Alexeev
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J Anchell
- Intel Corporation, Santa Clara, California 95054, USA
| | - V Anisimov
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - F W Aquino
- QSimulate, Cambridge, Massachusetts 02139, USA
| | - R Atta-Fynn
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - J Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - N P Bauman
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - J C Becca
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - D E Bernholdt
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | - S Bogatko
- 4G Clinical, Wellesley, Massachusetts 02481, USA
| | - P Borowski
- Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - J Boschen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - J Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 18223 Prague 8, Czech Republic
| | - A Bruner
- Department of Chemistry and Physics, University of Tennessee at Martin, Martin, Tennessee 38238, USA
| | - E Cauët
- Service de Chimie Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Y Chen
- Facebook, Menlo Park, California 94025, USA
| | - G N Chuev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - C J Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Daily
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M J O Deegan
- SKAO, Jodrell Bank Observatory, Macclesfield SK11 9DL, United Kingdom
| | - T H Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - M Dupuis
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - K G Dyall
- Dirac Solutions, Portland, Oregon 97229, USA
| | - G I Fann
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S A Fischer
- Chemistry Division, U. S. Naval Research Laboratory, Washington, DC 20375, USA
| | - A Fonari
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - H Früchtl
- EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom
| | - L Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Garza
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, Mexico
| | - N Gawande
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - S Ghosh
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 5545, USA
| | - K Glaesemann
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A W Götz
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - J Hammond
- Intel Corporation, Santa Clara, California 95054, USA
| | - V Helms
- Center for Bioinformatics, Saarland University, D-66041 Saarbrücken, Germany
| | - E D Hermes
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA
| | - K Hirao
- Next-generation Molecular Theory Unit, Advanced Science Institute, RIKEN, Saitama 351-0198, Japan
| | - S Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - M Jacquelin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B G Johnson
- Acrobatiq, Pittsburgh, Pennsylvania 15206, USA
| | - H Jónsson
- Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland and Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - R A Kendall
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Klemm
- Intel Corporation, Santa Clara, California 95054, USA
| | - R Kobayashi
- ANU Supercomputer Facility, Australian National University, Canberra, Australia
| | - V Konkov
- Chemistry Program, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - S Krishnamoorthy
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M Krishnan
- Facebook, Menlo Park, California 94025, USA
| | - Z Lin
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - R D Lins
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | | | - A J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, Wales CF10 3AT, United Kingdom
| | - K Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - W Ma
- Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - A V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Martin Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - D Mejia-Rodriguez
- Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, USA
| | - J E Moore
- Intel Corporation, Santa Clara, California 95054, USA
| | - J M Mullin
- DCI-Solutions, Aberdeen Proving Ground, Maryland 21005, USA
| | - T Nakajima
- Computational Molecular Science Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - D R Nascimento
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - J A Nichols
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P J Nichols
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Nieplocha
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A Otero-de-la-Roza
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - B Palmer
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A Panyala
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - T Pirojsirikul
- Department of Chemistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - B Peng
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - R Peverati
- Chemistry Program, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - J Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 18223 Prague 8, Czech Republic
| | - L Pollack
- StudyPoint, Boston, Massachusetts 02114, USA
| | | | - P Sadayappan
- School of Computing, University of Utah, Salt Lake City, Utah 84112, USA
| | - G C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - W A Shelton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | - D M A Smith
- Intel Corporation, Santa Clara, California 95054, USA
| | - T A Soares
- Dept. of Fundamental Chemistry, Universidade Federal de Pernambuco, Recife, Brazil
| | - D Song
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M Swart
- ICREA, 08010 Barcelona, Spain and Universitat Girona, Institut de Química Computacional i Catàlisi, Campus Montilivi, 17003 Girona, Spain
| | - H L Taylor
- CD-adapco/Siemens, Melville, New York 11747, USA
| | - G S Thomas
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - V Tipparaju
- Cray Inc., Bloomington, Minnesota 55425, USA
| | - D G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - T Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Á Vázquez-Mayagoitia
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - P Verma
- 1QBit, Vancouver, British Columbia V6E 4B1, Canada
| | - O Villa
- NVIDIA, Santa Clara, California 95051, USA
| | - A Vishnu
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - K D Vogiatzis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, China
| | - J H Weare
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - M J Williamson
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - T L Windus
- Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa 50011, USA
| | - K Woliński
- Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - A T Wong
- Qwil, San Francisco, California 94107, USA
| | - Q Wu
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Yang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Q Yu
- AMD, Santa Clara, California 95054, USA
| | - M Zacharias
- Department of Physics, Technical University of Munich, 85748 Garching, Germany
| | - Z Zhang
- Stanford Research Computing Center, Stanford University, Stanford, California 94305, USA
| | - Y Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - R J Harrison
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
24
|
Bruner A, Cavaletto SM, Govind N, Mukamel S. Resonant X-ray Sum-Frequency-Generation Spectroscopy of K-Edges in Acetyl Fluoride. J Chem Theory Comput 2019; 15:6832-6839. [DOI: 10.1021/acs.jctc.9b00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Bruner
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Stefano M. Cavaletto
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
25
|
Ghosh S, Asher JC, Gagliardi L, Cramer CJ, Govind N. A semiempirical effective Hamiltonian based approach for analyzing excited state wave functions and computing excited state absorption spectra using real-time dynamics. J Chem Phys 2019; 150:104103. [DOI: 10.1063/1.5061746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Jason C. Asher
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99338, USA
| |
Collapse
|
26
|
de Wergifosse M, Grimme S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. J Chem Phys 2019; 150:094112. [DOI: 10.1063/1.5080199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
27
|
Sinha-Roy R, García-González P, López Lozano X, Whetten RL, Weissker HC. Identifying Electronic Modes by Fourier Transform from δ-Kick Time-Evolution TDDFT Calculations. J Chem Theory Comput 2018; 14:6417-6426. [PMID: 30404453 DOI: 10.1021/acs.jctc.8b00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Time-dependent density-functional theory (TDDFT) is widely used for calculating electron excitations in clusters and large molecules. For optical excitations, TDDFT is customarily applied in two distinct approaches: transition-based linear-response TDDFT (LR-TDDFT) and the real-time formalism (RT-TDDFT). The former directly provides the energies and transition densities of the excitations, but it requires the calculation of a large number of empty electron states, which makes it cumbersome for large systems. By contrast, RT-TDDFT circumvents the evaluation of empty orbitals, which is especially advantageous when dealing with large systems. A drawback of the procedure is that information about the nature of individual spectral features is not automatically obtained, although it is of course contained in the time-dependent induced density. Fourier transform of the induced density has been used in some simple cases, but the method is, surprisingly, not widely used to complement the RT-TDDFT calculations; although the reliability of RT-TDDFT spectra is now widely accepted, a critical assessment for the corresponding transition densities and a demonstration of the technical feasibility of the Fourier-transform evaluation for general cases is still lacking. In the present work, we show that the transition densities of the optically allowed excitations can be efficiently extracted from a single δ-kick time-evolution calculation even in complex systems like noble metals. We assess the results by comparison with the corresponding LR-TDDFT ones and also with the induced densities arising from RT-TDDFT simulations of the excitation process.
Collapse
Affiliation(s)
- Rajarshi Sinha-Roy
- Aix-Marseille University , CNRS, CINaM , 13288 Marseille , France.,Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC) , Universidad Autónoma de Madrid , E-28049 Madrid , Spain.,European Theoretical Spectroscopy Facility (ETSF)
| | - Pablo García-González
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC) , Universidad Autónoma de Madrid , E-28049 Madrid , Spain.,European Theoretical Spectroscopy Facility (ETSF)
| | - Xóchitl López Lozano
- Department of Physics & Astronomy , The University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249-0697 , United States
| | - Robert L Whetten
- Department of Physics & Astronomy , The University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249-0697 , United States
| | - Hans-Christian Weissker
- Aix-Marseille University , CNRS, CINaM , 13288 Marseille , France.,European Theoretical Spectroscopy Facility (ETSF)
| |
Collapse
|
28
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
29
|
Segarra-Martí J, Zvereva E, Marazzi M, Brazard J, Dumont E, Assfeld X, Haacke S, Garavelli M, Monari A, Léonard J, Rivalta I. Resolving the Singlet Excited State Manifold of Benzophenone by First-Principles Simulations and Ultrafast Spectroscopy. J Chem Theory Comput 2018; 14:2570-2585. [DOI: 10.1021/acs.jctc.7b01208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Segarra-Martí
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Elena Zvereva
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CentreRussian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
| | - Marco Marazzi
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Johanna Brazard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Elise Dumont
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Xavier Assfeld
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| |
Collapse
|