1
|
Broughton JJ, Patra S, Parkes MA, Worth GA, Fielding HH. A multiphoton ionisation photoelectron imaging study of thiophene. Phys Chem Chem Phys 2024; 26:25461-25468. [PMID: 39324231 DOI: 10.1039/d4cp02504k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Thiophene is a prototype for the excited state photophysics that lies at the heart of many technologies within the field of organic electronics. Here, we report a multiphoton ionisation photoelectron imaging study of gas-phase thiophene using a range of photon energies to excite transitions from the ground electronic state to the first two electronically excited singlet states, from the onset of absorption to the absorption maximum. Analysis of the photoelectron spectra and angular distributions reveal features arising from direct photoionisation from the ground electronic state, and resonance-enhanced photoionisation via the electronically excited singlet states. The first two ionisation energies from the ground electronic state were confirmed to be 8.8 eV (adiabatic) and 9.6 eV (vertical). The ionisation energies from the first two electronically excited singlet states were found to be 3.7 eV (adiabatic) and 4.4 eV (vertical).
Collapse
Affiliation(s)
- Joseph J Broughton
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Sarbani Patra
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Michael A Parkes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Helen H Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
2
|
Parkes MA, Worth GA. The "simple" photochemistry of thiophene. J Chem Phys 2024; 161:114305. [PMID: 39291689 DOI: 10.1063/5.0226105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
The static gas-phase ("simple") ultraviolet absorption spectrum of thiophene is investigated using a combination of a vibronic coupling model Hamiltonian with multi-configuration time-dependent Hartree quantum dynamics simulations. The model includes five states and all 21 vibrations, with potential surfaces calculated at the complete active space with second-order perturbation level of theory. The model includes terms up to eighth-order to describe the diabatic potentials. The resulting spectrum is in excellent agreement with the experimentally measured spectrum of Holland et al. [Phys. Chem. Chem. Phys. 16, 21629 (2014)]. The, until now not understood, spectral features are assigned, with a combination of strongly coupled vibrations and vibronic coupling between the states giving rise to a progression of triplets on the rising edge of the broad spectrum. The analysis of the underlying dynamics indicates that population transfer between all states takes place on a sub-100 fs timescale, with ring-opening occurring at longer times. The model thus provides a starting point for further investigations into the complicated photo-excited dynamics of this key hetero-aromatic molecule.
Collapse
Affiliation(s)
- Michael A Parkes
- Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| |
Collapse
|
3
|
Griffith C, Mao E, Hoehn SJ, Krul SE, Crespo-Hernández CE. Carbon-sulfur bond elongation as the promoting reaction coordinate in the efficient sub-nanosecond intersystem crossing in thianaphthene derivatives. Phys Chem Chem Phys 2024; 26:23457-23467. [PMID: 39221604 DOI: 10.1039/d4cp02849j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Thiophene derivatives have become integral to OLEDs, photovoltaics, and photodynamic therapy research. A deeper understanding of their excited state dynamics and electronic relaxation mechanisms is expected to provide important physical insights of direct relevance for these applications. In this study, thianaphthene (TN), 2-methylbenzothiophene (2MBT), and 3-methylbenzothiophene (3MBT) are investigated using femtosecond broadband transient absorption and steady-state spectroscopy techniques along with time-dependent density functional calculations in cyclohexane and acetonitrile. The photophysical properties and electronic relaxation mechanisms of these derivatives are elucidated. Small fluorescence quantum yields ranging from 0.4 to 1.1% are measured. It is demonstrated that excitation of TN at 290 nm leads primarily to intersystem crossing to the triplet manifold with a lifetime of 400 ± 15 ps in either solvent, whereas four- to twofold shorter intersystem crossing lifetimes are measured for 2MBT and 3MBT depending on whether cyclohexane or acetonitrile is used. Linear interpolation of internal coordinates evidence that elongation of the S-C bonds enables ultrafast intersystem crossing in these thiophene derivatives involving singlet and triplet states with ππ* and πσ* characters. Excitation at 266 nm results in an additional 5 ± 1 ps lifetime, which is assigned to intramolecular vibrational relaxation dynamics occurring in the excited singlet state.
Collapse
Affiliation(s)
- Cameron Griffith
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Erqian Mao
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Sarah E Krul
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
4
|
Griffrith C, Krul SE, Hoehn SJ, Phan T, Crespo-Hernández CE. Structural and Electronic Factors Controlling the Efficiency and Rate of Intersystem Crossing to the Triplet State in Thiophene Polycyclic Derivatives. Chemistry 2024:e202402721. [PMID: 39185738 DOI: 10.1002/chem.202402721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Thiophene polycyclic derivatives are widely used in organic light-emitting diodes, photovoltaics, and medicinal chemistry applications. Understanding the electronic and structural factors controlling their intersystem crossing rates is paramount for these applications to be successful. This study investigates the photophysical, electronic structure, and excited state dynamics of 1,2-benzodiphenylene sulfide, benzo[b]naphtho[1,2-d]thiophene, and benzo[b]naphtho[2,3-d]thiophene in polar aprotic and non-polar solvents. Steady-state absorption and emission spectroscopy, femtosecond transient absorption spectroscopy, and DFT and TD-DFT calculations are employed. Low fluorescence quantum yields of 1.2 to 2.7 % are measured in acetonitrile and cyclohexene, evidencing that the primary relaxation pathways in these thiophene derivatives are nonradiative. Linear interpolation of internal coordinates calculations predict that an S-C bond elongation reaction coordinate facilitates the efficient intersystem crossing to the T1 state. Excitation of 1,2-benzodiphenylene sulfide and benzo[b]naphtho[1,2-d]thiophene at 350 nm or benzo[b]naphtho[2,3-d]thiophene at 365 nm, populates the lowest-energy 1ππ* state, which relaxes to the 1ππ* minimum in tens of picoseconds or intersystem crosses to the triplet manifold in ca. 500 ps to 1.1 ns depending on the position at which the benzene rings are added. Excitation at 266 nm does not affect the intersystem crossing rates. Laser photodegradation experiments demonstrate that the thiophene polycyclic derivatives are highly photostable.
Collapse
Affiliation(s)
- Cameron Griffrith
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Sarah E Krul
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Tram Phan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | | |
Collapse
|
5
|
Ulukan P, Lognon E, Catak S, Monari A. Intersystem crossing in a dibenzofuran-based room temperature phosphorescent luminophore investigated by non-adiabatic dynamics. Phys Chem Chem Phys 2024; 26:22261-22268. [PMID: 39136100 DOI: 10.1039/d4cp02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The use of phosphorescent luminophores is highly beneficial in diverse high-technological and biological applications. Yet, because of the formally forbidden character of intersystem crossing, the use of heavy metals or atoms is usually necessary to achieve high quantum yields. This choice imposes serious constraints in terms of high device cost and inherent toxicity. In this contribution we resort to density functional based surface hopping non-adiabatic dynamics of a potential organic luminophore intended for room-temperature applications. We confirm that intersystem crossing is operative in a ps time-scale without requiring the activation of large-scale movements, thus confirming the suitability of the El Sayed-based strategy for the rational design of fully organic phosphorescent emitters.
Collapse
Affiliation(s)
- Pelin Ulukan
- Bogazici University, 34342 Bebek/Istanbul, Turkey
| | - Elise Lognon
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France.
| | - Saron Catak
- Bogazici University, 34342 Bebek/Istanbul, Turkey
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France.
| |
Collapse
|
6
|
Razmus WO, Allum F, Harries J, Kumagai Y, Nagaya K, Bhattacharyya S, Britton M, Brouard M, Bucksbaum PH, Cheung K, Crane SW, Fushitani M, Gabalski I, Gejo T, Ghrist A, Heathcote D, Hikosaka Y, Hishikawa A, Hockett P, Jones E, Kukk E, Iwayama H, Lam HVS, McManus JW, Milesevic D, Mikosch J, Minemoto S, Niozu A, Orr-Ewing AJ, Owada S, Rolles D, Rudenko A, Townsend D, Ueda K, Unwin J, Vallance C, Venkatachalam A, Wada SI, Walmsley T, Warne EM, Woodhouse JL, Burt M, Ashfold MNR, Minns RS, Forbes R. Exploring the ultrafast and isomer-dependent photodissociation of iodothiophenes via site-selective ionization. Phys Chem Chem Phys 2024; 26:12725-12737. [PMID: 38616653 DOI: 10.1039/d3cp06079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.
Collapse
Affiliation(s)
- Weronika O Razmus
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | | | - Yoshiaki Kumagai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Surjendu Bhattacharyya
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Mathew Britton
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Philip H Bucksbaum
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kieran Cheung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Stuart W Crane
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Mizuho Fushitani
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Ian Gabalski
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Tatsuo Gejo
- Graduate School of Material Science, University of Hyogo, Kuoto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Aaron Ghrist
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - David Heathcote
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Yasumasa Hikosaka
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Akiyoshi Hishikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Paul Hockett
- National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
| | - Ellen Jones
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | | | - Huynh V S Lam
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Joseph W McManus
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Dennis Milesevic
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Jochen Mikosch
- Department of Physics, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Shinichirou Minemoto
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akinobu Niozu
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Dave Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
- Department of Condensed Matter Physics and Photon Science, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - James Unwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Anbu Venkatachalam
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Shin-Ichi Wada
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tiffany Walmsley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Emily M Warne
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Joanne L Woodhouse
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Russell S Minns
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Ruaridh Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| |
Collapse
|
7
|
Headen TF, Di Mino C, Youngs TG, Clancy AJ. The structure of liquid thiophene from total neutron scattering. Phys Chem Chem Phys 2023; 25:25157-25165. [PMID: 37712384 DOI: 10.1039/d3cp03932c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The structure of pure liquid thiophene is revealed by using a combination of total neutron scattering experiments with isotopic substitution and molecular simulations via the next generation empirical potential refinement software, Dissolve. In the liquid, thiophene presents three principle local structural motifs within the first solvation shell, in plane and out of the plane of the thiophene ring. Firstly, above/below the ring plane thiophenes present a single H towards the π cloud, due to a combination of electrostatic and dispersion interactions. Secondly, around the ring plane, perpendicular thiophene molecules find 5 preferred sites driven by bifurcated C-H⋯S interactions, showing that hydrogen-sulfur bonding prevails over the charge asymmetry created by the heteroatom. Finally, parallel thiophenes sit above and below the ring, excluded from directly above the ring center and above the sulfur.
Collapse
Affiliation(s)
- Thomas F Headen
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.
| | - Camilla Di Mino
- Department of Materials, University of Oxford, 21 Banbury Rd, Oxford, OX2 6NN, UK
- Department of Physics & Astronomy, University College London, Gower St, London WC1E 6BT, UK
| | - Tristan Ga Youngs
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.
| | - Adam J Clancy
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| |
Collapse
|
8
|
Toulson BW, Hait D, Faccialà D, Neumark DM, Leone SR, Head-Gordon M, Gessner O. Probing C-I bond fission in the UV photochemistry of 2-iodothiophene with core-to-valence transient absorption spectroscopy. J Chem Phys 2023; 159:034304. [PMID: 37466229 DOI: 10.1063/5.0151629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
The UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photo-induced chemical transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C4H3IS) is performed. The dynamics are experimentally monitored with a femtosecond extreme ultraviolet (XUV) probe that measures iodine N-edge 4d core-to-valence transitions. Experiments are complemented by density functional theory calculations of both the pump-pulse induced valence excitations and the XUV probe-induced core-to-valence transitions. Possible intramolecular relaxation dynamics are investigated by ab initio molecular dynamics simulations. Gradual absorption changes up to ∼0.5 to 1 ps after excitation are observed for both the parent molecular species and emerging iodine fragments, with the latter appearing with a characteristic rise time of 160 ± 30 fs. Comparison of spectral intensities and energies with the calculations identifies an iodine dissociation pathway initiated by a predominant π → π* excitation. In contrast, initial excitation to a nearby n⟂ → σ* state appears unlikely based on a significantly smaller oscillator strength and the absence of any corresponding XUV absorption signatures. Excitation to the π → π* state is followed by contraction of the C-I bond, enabling a nonadiabatic transition to a dissociative π→σC-I* state. For the subsequent fragmentation, a relatively narrow bond-length region along the C-I stretch coordinate between 230 and 280 pm is identified, where the transition between the parent molecule and the thienyl radical + iodine atom products becomes prominent in the XUV spectrum due to rapid localization of two singly occupied molecular orbitals on the two fragments.
Collapse
Affiliation(s)
- Benjamin W Toulson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Diptarka Hait
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Davide Faccialà
- CNR-Istituto di Fotonica e Nanotecnologie (CNR-IFN), 20133 Milano, Italy
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Kukk E, Pihlava L, Kooser K, Stråhlman C, Maclot S, Kivimäki A. Energy-dependent timescales in the dissociation of diiodothiophene dication. Phys Chem Chem Phys 2023; 25:5795-5807. [PMID: 36744651 DOI: 10.1039/d2cp05309h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ → C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.
Collapse
Affiliation(s)
- Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland. .,CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, 4 Pl. Jussieu, 75005, Paris, France
| | - Lassi Pihlava
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.
| | - Kuno Kooser
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland. .,Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Christian Stråhlman
- Department of Materials Science and Applied Mathematics, Malmö University, SE-20506 Malmö, Sweden
| | - Sylvain Maclot
- Department of Physics, Gothenburg University, Box 100, SE-40530 Gothenburg, Sweden
| | - Antti Kivimäki
- MAX IV Laboratory, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
10
|
Talbot JJ, Head-Gordon M, Cotton SJ. The symmetric quasi-classical model using on-the-fly time-dependent density functional theory within the Tamm–Dancoff approximation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Justin J. Talbot
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J. Cotton
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
de Castro Araujo Valente D, Borges I, Cardozo TM. Nonradiative relaxation mechanisms of the elusive silole molecule. Phys Chem Chem Phys 2021; 23:26561-26574. [PMID: 34811562 DOI: 10.1039/d1cp03803f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silole derivatives have been extensively employed for developing organic optoelectronics, but few studies focused on the photophysical properties of the silole molecule. In this work, we investigate these properties by computing the absorption spectra and performing nonadiabatic molecular dynamics of silole employing the algebraic diagrammatic construction [ADC(2)] and extended multi-state XMS-CASPT2 ab initio electronic structure methods. For vertical excitations and excited state optimizations, the equation of motion coupled-cluster singles and doubles (EOM-CCSD) was also used. The nuclear ensemble and the fewest-switches surface hopping molecular dynamics methods coupled with the first two high-level electronic structure methods were applied to probe the relaxation mechanisms of silole. We could reproduce the experimental first absorption maximum value and found an ultrafast relaxation process occurring exclusively through ring-puckering distortions without breaking ring bonds or hydrogen elimination. Minimum energy conical intersection optimizations were carried out and potential energy curves, including triplet states, were calculated to further elucidate the relaxation process of silole.
Collapse
Affiliation(s)
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Thiago Messias Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
M J C, Nag P, Vennapusa SR. Surface hopping dynamics reveal ultrafast triplet generation promoted by S 1-T 2-T 1 spin-vibronic coupling in 2-mercaptobenzothiazole. Phys Chem Chem Phys 2021; 23:20183-20192. [PMID: 34473155 DOI: 10.1039/d1cp02587b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the T1 formation upon populating the optically "bright" S2 in 2-mercaptobenzothiazole to interpret the underlying relaxation pathways associated with the experimental decay constants reported by D. Koyama and A. J. Orr-Ewing, Phys. Chem. Chem. Phys., 2016, 18, 26224-26235. Energetics, electronic populations and geometries of various stationary points of low-lying electronic states are computed using the semi-classical ab initio surface hopping dynamics simulations. Estimated decay constants of S2-S1 internal conversion (IC) and S1-T2 intersystem crossing (ISC) are in excellent agreement with the experiment. The observed ultrafast ISC is analyzed based on the S1-T2-T1 spin-vibronic coupling mechanism. In contrast to the previous assignment of 6 ps to the T2-T1 IC, our findings enable us to attribute this decay constant to the combined events of T2-T1 IC followed by relaxation of vibrationally hot T1.
Collapse
Affiliation(s)
- Chithra M J
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
13
|
Guan Y, Xie C, Guo H, Yarkony DR. Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S 0, S 1, and T 1 States. J Chem Theory Comput 2021; 17:4157-4168. [PMID: 34132545 DOI: 10.1021/acs.jctc.1c00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In our recent work, a diabatic Hamiltonian that couples the S0 and S1 states of formaldehyde was constructed using a robust fitting-and-diabatizing procedure with artificial neural networks, which is capable of representing adiabatic energies, energy gradients, and derivative couplings over a wide range of geometries including seams of conical intersection. In this work, based on the diabatization of S0 and S1, the spin-orbit couplings between singlet states (S0, S1) and triplet state T1 are also determined in the same diabatic representation. The diabatized spin-orbit couplings are then fit with a symmetrized neural-network functional form. The ab initio spin-orbit couplings are well reproduced in large configuration space. Together with the neural-network-based potential energy surface for T1, the full quasi-diabatic Hamiltonian for the S0, S1, and T1 states is completed, enabling a unified description of both internal conversion and intersystem crossing in formaldehyde. The vibrational levels on the three adiabatic states are found to be in good agreement with known experimental band origins.
Collapse
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Changjian Xie
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Dash M, Moroni S, Filippi C, Scemama A. Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene. J Chem Theory Comput 2021; 17:3426-3434. [PMID: 34029098 PMCID: PMC8190955 DOI: 10.1021/acs.jctc.1c00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The perturbatively
selected configuration interaction scheme (CIPSI)
is particularly effective in constructing determinantal expansions
for quantum Monte Carlo (QMC) simulations with Jastrow–Slater
wave functions: fast and smooth convergence of ground-state properties
and balanced descriptions of ground and excited states of different
symmetries have been reported. In particular, accurate excitation
energies have been obtained by the pivotal requirement of using CIPSI
expansions with similar second-order perturbation corrections for
each state, that is, a similar estimated distance to the full configuration
interaction limit. Here, we elaborate on the CIPSI selection criterion
for excited states of the same symmetry as the ground state, generating
expansions from a common orbital set. Using these expansions in QMC
as determinantal components of Jastrow–Slater wave functions,
we compute the lowest, bright excited state of thiophene, which is
challenging due to its significant multireference character. The resulting
vertical excitation energies are within 0.05 eV of the best theoretical
estimates, already with expansions of only a few thousand determinants.
Furthermore, we relax the ground- and excited-state structures following
the corresponding root in variational Monte Carlo and obtain bond
lengths that are accurate to better than 0.01 Å. Therefore, while
the full treatment at the CIPSI level of this system is quite demanding,
in QMC, we can compute high-quality excitation energies and excited-state
structural parameters building on affordable CIPSI expansions with
relatively few, well-chosen determinants.
Collapse
Affiliation(s)
- Monika Dash
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Saverio Moroni
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, F-31400 Toulouse, France
| |
Collapse
|
15
|
Heller ER, Joswig JO, Seifert G. Exploring the effects of quantum decoherence on the excited-state dynamics of molecular systems. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFewest-switches surface hopping (FSSH) is employed in order to investigate the nonadiabatic excited-state dynamics of thiophene and related compounds and hence to establish a connection between the electronic system, the critical points in configuration space and the deactivation dynamics. The potential-energy surfaces of the studied molecules were calculated with complete active space self-consistent field and time-dependent density-functional theory. They are analyzed thoroughly to locate and optimize minimum-energy conical intersections, which are essential to the dynamics of the system. The influence of decoherence on the dynamics is examined by employing different decoherence schemes. We find that irrespective of the employed decoherence algorithm, the population dynamics of thiophene give results which are sound with the expectations grounded on the analysis of the potential-energy surface. A more detailed look at single trajectories as well as on the excited-state lifetimes, however, reveals a substantial dependence on how decoherence is accounted for. In order to connect these findings, we describe how ensemble averaging cures some of the overcoherence problems of uncorrected FSSH. Eventually, we identify carbon–sulfur bond cleavage as a common feature accompanying electronic transitions between different states in the simulations of all thiophene-related compounds studied in this work, which is of interest due to their relevance in organic photovoltaics.
Collapse
|
16
|
Bian X, Wu Y, Teh HH, Zhou Z, Chen HT, Subotnik JE. Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing, and spin separation: A key goal for chemical physics. J Chem Phys 2021; 154:110901. [DOI: 10.1063/5.0039371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hung-Hsuan Teh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zeyu Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Xie BB, Liu BL, Tang XF, Tang D, Shen L, Fang WH. Nonadiabatic dynamics simulation of photoinduced ring-opening reaction of 2(5 H)-thiophenone with internal conversion and intersystem crossing. Phys Chem Chem Phys 2021; 23:9867-9877. [PMID: 33908501 DOI: 10.1039/d1cp00281c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present work, the quantum trajectory mean-field approach, which is able to overcome the overcoherence problem, was generalized to simulate internal conversion and intersystem crossing processes simultaneously. The photoinduced ring-opening and subsequent rearrangement reactions of isolated 2(5H)-thiophenone were studied based on geometry optimizations on critical structures and nonadiabatic dynamics simulations using this method. Upon 267 nm irradiation, the molecule is initially populated in the 1ππ* state. After a sudden rupture of one C-S bond within 100 fs in this state, the lowest two singlet excited states and the lowest two triplet excited states become quasi-degenerated, and then the intersystem crossing processes between singlet and triplet states accompanied by rearrangement reactions can be observed several times. Compared with our previous nonadiabatic simulations in the absence of intersystem crossing (ChemPhotoChem, 2019, 3, 897-906), some new nonadiabatic relaxation pathways involving triplet states and different ring-opening products were identified. The present work provides new mechanistic insights into the photoinduced ring-opening of thio-substituted heterocyclic molecules and reveals the importance of nonadiabatic dynamics simulation that is able to deal with multiple electronic states with different spin multiplicities.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Isukapalli SVK, Lekshmi RS, Samanta PK, Vennapusa SR. Formation of excited triplet states in naphthalene diimide and perylene diimide derivatives: A detailed theoretical study. J Chem Phys 2020; 153:124301. [PMID: 33003744 DOI: 10.1063/5.0012476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mechanistic details of the excited triplet state formation upon photoexcitation to the low-lying singlet manifold in naphthalene diimide and perylene diimide derivatives are explored theoretically. Static and dynamic aspects of two singlets (S1 and S2) and six triplets (T1-T6) of these molecules are investigated. Suitable vibronic Hamiltonians are constructed to investigate the internal conversion dynamics in both the singlet and triplet manifolds. Computed singlet-triplet energetics, spin-orbit coupling matrix elements, and intersystem crossing rates strongly suggest an efficient intersystem crossing process involving higher triplet states (T6, T5, and T4). Separate full dimensional quantum wavepacket simulations of singlet and triplet manifolds in the approximate linear vibronic model by assuming initial Franck-Condon conditions are carried out to unravel the internal conversion decay dynamics in the respective manifolds. The obtained diabatic electronic populations and nuclear densities are analyzed to illustrate the triplet generation pathways involving higher triplet states in these molecules.
Collapse
Affiliation(s)
- Sai Vamsi Krishna Isukapalli
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, India
| | - R S Lekshmi
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, India
| | - Pralok Kumar Samanta
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Sivaranjana Reddy Vennapusa
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
19
|
Suchan J, Janoš J, Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J Chem Theory Comput 2020; 16:5809-5820. [DOI: 10.1021/acs.jctc.0c00512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
20
|
Kucur O, Turan HT, Monari A, Aviyente V. Computational Study of Photo-oxidative Degradation Mechanisms of Boron-Containing Oligothiophenes. J Phys Chem A 2020; 124:1390-1398. [DOI: 10.1021/acs.jpca.9b07858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oğuzhan Kucur
- Department of Chemistry, Faculty of Arts and Sciences, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Haydar Taylan Turan
- Department of Chemistry, Faculty of Arts and Sciences, Bogazici University, 34342 Bebek, Istanbul, Turkey
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Théorie-Modélisation-Simulation, CNRS, SRSMC Boulevard des Aiguillettes, Vandoeuvre-lès-Nancy, Nancy, France
| | - Viktorya Aviyente
- Department of Chemistry, Faculty of Arts and Sciences, Bogazici University, 34342 Bebek, Istanbul, Turkey
| |
Collapse
|
21
|
Lineros-Rosa M, Francés-Monerris A, Monari A, Miranda MA, Lhiaubet-Vallet V. Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates. Phys Chem Chem Phys 2020; 22:25661-25668. [DOI: 10.1039/d0cp04557h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Combined spectroscopic and computational studies reveal that, in spite of their structural similarities, 5-formyluracil and 5-formylcytosine photosensitize cyclobutane thymine dimers through two different types of mechanisms.
Collapse
Affiliation(s)
- Mauricio Lineros-Rosa
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | | | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
| | - Miguel Angel Miranda
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| |
Collapse
|
22
|
Upadhyaya HP. Ground-state dissociation pathways for the molecular cation of 2-chlorothiophene: A time-of-flight mass spectrometry and computational study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1598-1612. [PMID: 31148314 DOI: 10.1002/rcm.8497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Halogenated thiophenes are an important class of compounds mostly used in the synthesis of various materials, showing unusual electronic and optical properties. The Thiophene Ring Fragmentation (TRF) process is widely used in synthetic chemistry. In this study, the fragmentation pattern of the molecular cation of halogenated thiophene, namely, 2-chlorothiophene, was monitored to establish its dissociation mechanism. METHODS The molecular cation of 2-chlorothiophene was prepared using multiphoton excitation using a laser at 235 nm. Various product ions upon fragmentation of the molecular ion were mass analyzed using time-of-flight mass spectrometry. Laser power dependence studies were also conducted for various product ions to arrive at the dissociation mechanism. Theoretical calculations were carried out to estimate the reaction enthalpies for various reactions and compared with the experimental data available in the literature. RESULTS The most abundant product ion was observed as the HCS+ radical cation followed by the C3 H3 + ion and the H2 CCCCS+ radical cation. Other product ions such as SCCl+ , ClHCCS+ radical cations were also observed to a lesser extent in the fragmentation pattern of the parent molecular ion. Various dissociation channels were identified and supported with ab initio calculation. It has been inferred that the TRF process is usually initiated by the H/Cl atom transfer process. The appearance energies of the various fragment ions were also estimated theoretically and compared with literature values. CONCLUSIONS In conclusion, the fragmentation pattern of the molecular cation of 2-chlorothiophene was studied and the formation mechanisms of various product ions have been assigned. The appearance energies of the various fragment ions were also calculated. Finally, it is inferred that a TRF process is initiated by the H/Cl atom migration and subsequent ring opening either by C-C or C-S bond cleavage leading to the various isomers and their subsequent fragmentation. The ionization energies were accurately predicted for various species using ab initio calculation.
Collapse
Affiliation(s)
- Hari P Upadhyaya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| |
Collapse
|
23
|
Wang H, Odelius M, Prendergast D. A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation. J Chem Phys 2019; 151:124106. [PMID: 31575206 DOI: 10.1063/1.5116816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UV pump-XUV/X-ray probe measurements have been successfully applied in the study of photo-induced chemical reactions. Although rich element-specific electronic structure information is accessible within XUV/X-ray (inner-shell) absorption spectra, it can be difficult to interpret the chemistry directly from the spectrum without supporting theoretical simulations. A multireference method to completely simulate UV pump-XUV/X-ray probe measurement has been developed and applied to study the methyl iodide photodissociation process. Multireference, fewest-switches surface hopping (FSSH) trajectories were used to explore the coupled electronic and ionic dynamics upon photoexcitation of methyl iodide. Interpretation of previous measurements is provided by associated multireference, restricted active space, inner-shell spectral simulations. This combination of multireference FSSH trajectories and XUV spectra provides an interpretation of transient features appearing in previous measurements within the first 100 fs after photoexcitation and validates the significant branching ratio in the final excited-state population. This methodology should prove useful for interpretation of the increasing number of inner-shell probe studies of molecular excited states or for directing new experiments toward interesting regions of the potential energy landscape.
Collapse
Affiliation(s)
- Han Wang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - David Prendergast
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Wolf TJA, Parrish RM, Myhre RH, Martínez TJ, Koch H, Gühr M. Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy. J Phys Chem A 2019; 123:6897-6903. [PMID: 31319031 DOI: 10.1021/acs.jpca.9b05573] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the photoinduced ultrafast relaxation dynamics of the nucleobase thymine using gas-phase time-resolved photoelectron spectroscopy. By employing extreme ultraviolet pulses from high harmonic generation for photoionization, we substantially extend our spectral observation window with respect to previous studies. This enables us to follow relaxation of the excited state population all the way to low-lying electronic states including the ground state. In thymine, we observe relaxation from the optically bright 1ππ* state of thymine to a dark 1nπ* state within 80 ± 30 fs. The 1nπ* state relaxes further within 3.5 ± 0.3 ps to a low-lying electronic state. By comparison with quantum chemical simulations, we can unambiguously assign its spectroscopic signature to the 3ππ* state. Hence, our study draws a comprehensive picture of the relaxation mechanism of thymine including ultrafast intersystem crossing to the triplet manifold.
Collapse
Affiliation(s)
- Thomas J A Wolf
- Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Robert M Parrish
- Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.,Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Rolf H Myhre
- Department of Chemistry , Norwegian University of Science and Technology , NO-7491 Trondheim , Norway
| | - Todd J Martínez
- Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.,Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Henrik Koch
- Scuola Normale Superiore , Piazza dei Cavalieri, 7 , 56126 Pisa , PI , Italy
| | - Markus Gühr
- Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.,Institut für Physik und Astronomie , Universität Potsdam , 14476 Potsdam , Germany
| |
Collapse
|
25
|
Datko BD, Livshits M, Zhang Z, Qin Y, Jakubikova E, Rack JJ, Grey JK. Large Excited-State Conformational Displacements Expedite Triplet Formation in a Small Conjugated Oligomer. J Phys Chem Lett 2019; 10:1259-1263. [PMID: 30811200 DOI: 10.1021/acs.jpclett.9b00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intersystem crossing in conjugated organic molecules is most conveniently viewed from pure electronic perspectives; yet, vibrational displacements may often drive these transitions. We investigate an alkyl-substituted thienylene-vinylene dimer (dTV) displaying efficient triplet formation. Steady-state electronic and Raman spectra display large Stokes shifts (∼4000 cm-1) involving high-frequency skeletal symmetric stretching modes (∼900-1600 cm-1) in addition to large displacements of low-frequency torsional motions (∼300-340 cm-1). Transient absorption spectroscopy reveals the emergence of distorted singlet (S1) and triplet signatures following initial vibrational relaxation dynamics that dominate spectral dynamics on time scales > 100 ps, with the latter persisting on time scales up to ca. 7 μs. Potential energy surfaces calculated along the dominant displaced out-of-plane torsional mode reveal shallow energy barriers for entering the triplet manifold from S1. We propose that dTV is a good model system for understanding vibrational contributions to intersystem crossing events in related polymer systems.
Collapse
Affiliation(s)
- Benjamin D Datko
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Maksim Livshits
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Zhen Zhang
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Yang Qin
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - John K Grey
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
26
|
Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation. J Mol Model 2019; 25:75. [DOI: 10.1007/s00894-019-3958-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
27
|
Soto J, Otero JC, Avila FJ, Peláez D. Conical intersections and intersystem crossings explain product formation in photochemical reactions of aryl azides. Phys Chem Chem Phys 2019; 21:2389-2396. [DOI: 10.1039/c8cp06974c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photochemistry of substituted aryl azides is governed by surface crossings. Internal conversion and intersystem crossing govern photodecomposition of 3-methoxyphenyl azide and 4-methoxyphenyl azide.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071 Málaga
- Spain
| | - Juan C. Otero
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071 Málaga
- Spain
| | - Francisco J. Avila
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071 Málaga
- Spain
| | - Daniel Peláez
- Univ. Lille
- CNRS
- UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| |
Collapse
|
28
|
Schalk O, Larsen MAB, Skov AB, Liisberg MB, Geng T, Sølling TI, Thomas RD. Time-Resolved Photoelectron Studies of Thiophene and 2,5-Dimethylthiophene. J Phys Chem A 2018; 122:8809-8818. [DOI: 10.1021/acs.jpca.8b06728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- O. Schalk
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - M. A. B. Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - A. B. Skov
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - M. B. Liisberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - T. Geng
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - T. I. Sølling
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - R. D. Thomas
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Mai S, Marquetand P, González L. Nonadiabatic dynamics: The SHARC approach. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2018; 8:e1370. [PMID: 30450129 PMCID: PMC6220962 DOI: 10.1002/wcms.1370] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited-state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full-dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin-orbit couplings or dipole moment-laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings-this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems. This article is categorized under: Theoretical and Physical Chemistry > Reaction Dynamics and KineticsSoftware > Simulation MethodsSoftware > Quantum Chemistry.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| |
Collapse
|
30
|
Schnappinger T, Marazzi M, Mai S, Monari A, González L, de Vivie-Riedle R. Intersystem Crossing as a Key Component of the Nonadiabatic Relaxation Dynamics of Bithiophene and Terthiophene. J Chem Theory Comput 2018; 14:4530-4540. [DOI: 10.1021/acs.jctc.8b00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Schnappinger
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Marco Marazzi
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| |
Collapse
|
31
|
Theoretical Investigations on Mechanisms and Pathways of C₂H₅O₂ with BrO Reaction in the Atmosphere. Molecules 2018; 23:molecules23061268. [PMID: 29799497 PMCID: PMC6100565 DOI: 10.3390/molecules23061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
In this work, feasible mechanisms and pathways of the C2H5O2 + BrO reaction in the atmosphere were investigated using quantum chemistry methods, i.e., QCISD(T)/6-311++G(2df,2p)//B3LYP/6-311++G(2df,2p) levels of theory. Our result indicates that the title reaction occurs on both the singlet and triplet potential energy surfaces (PESs). Kinetically, singlet C2H5O3Br and C2H5O2BrO were dominant products under the atmospheric conditions below 300 K. CH3CHO2 + HOBr, CH3CHO + HOBrO, and CH3CHO + HBrO2 are feasible to a certain extent thermodynamically. Because of high energy barriers, all products formed on the triplet PES are negligible. Moreover, time-dependent density functional theory (TDDFT) calculation implies that C2H5O3Br and C2H5O2BrO will photolyze under the sunlight.
Collapse
|
32
|
Penfold TJ, Gindensperger E, Daniel C, Marian CM. Spin-Vibronic Mechanism for Intersystem Crossing. Chem Rev 2018; 118:6975-7025. [DOI: 10.1021/acs.chemrev.7b00617] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, United Kingdom
| | - Etienne Gindensperger
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Christel M. Marian
- Institut für Theoretische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|