1
|
Li Y, Cao B, Li B, Liu Y, Shi Y, Liu C, Jin M, Gao J, Ding D. Ultrahigh Aggregation Induced Emission Efficiency in Multitwist-Based Luminogens under High Pressure. J Phys Chem Lett 2022; 13:136-141. [PMID: 34962404 DOI: 10.1021/acs.jpclett.1c03745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing aggregation induced emission (AIE) efficiency is of fundamental interest as it directly reflects performance of multitwist-based luminogens in bioimaging and in the photoelectric device field. However, an effective and convenient methodology to increase AIE efficiency significantly remains a challenge. Here, we present a general strategy to increase AIE efficiency of multitwist-based luminogens by pressure, resulting in a 120.1-fold enhancement of the AIE intensity of tris[4-(diethylamino)phenyl]amine (TDAPA) under high pressure compared to that of the traditional method. AIE efficiency of TDAPA increases from 0.5% to 46.1% during compression. Experimental and theoretical investigations reveal that the AIE efficiency enhancement originates from intramolecular vibration and the twisted intramolecular charge transfer are suppressed under high pressure. High AIE efficiency under high pressure provides an important inspiration for improving performance of multitwist-based luminogens in the lighting and biomedical fields.
Collapse
Affiliation(s)
- You Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bifa Cao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yuliang Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Cailong Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology of Liaocheng University, Liaocheng 252059, China
| | - Mingxing Jin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jianbo Gao
- Ultrafast Photophysics of Quantum Devices Laboratory, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Zhang K, Wang F, Jiang Y, Wang X, Pan H, Sun Z, Sun H, Xu J, Chen J. New Insights about the Photostability of DNA/RNA Bases: Triplet nπ* State Leads to Effective Intersystem Crossing in Pyrimidinones. J Phys Chem B 2021; 125:2042-2049. [PMID: 33600186 DOI: 10.1021/acs.jpcb.0c10611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high photostability of DNA/RNA nucleobases is attributed to the effective internal conversions of their bright 1ππ* states to the ground state through conical intersections. Intersystem crossing (ISC) from singlet to triplet excited states is a minor decay pathway in nucleobases and it is observed with ∼1-2% quantum yields (QYs) in pyrimidine bases. Presumably, ISC in pyrimidines takes place from the dark singlet 1nπ* state to the lowest triplet 3ππ* state. However, recent studies showed that ISC from the initial populated bright 1ππ* state to higher energy triplet 3nπ* states indeed occurs in the subpicosecond timescale. Such a mechanism is still poorly understood since direct observation of this pathway is challenging. Herein, excited state dynamics of three pyrimidinones, which share the same skeleton with pyrimidine bases, is investigated in different solvents. Compared to canonical pyrimidine bases, removing the oxygen atom at the C4 position revokes the low-lying dark 1nπ* state in pyrimidinones, resulting in direct ISC from the S1 (1ππ*) state to triplet T3 (3nπ*) state with much higher QYs. Meanwhile, hydrogen bonding between the carbonyl group in pyrimidinones and protic solvents can accelerate vibrational cooling of the hot S1 (1ππ*) state, leading to higher fluorescence QYs and smaller ISC rate constants. These results not only evidence the hypothesis of the direct 1ππ* → 3nπ* ISC mechanism, but also contribute to a better understanding of triplet formation in pyrimidines.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Fufang Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Chan CTL, Ma C, Chan RCT, Ou HM, Xie HX, Wong AKW, Wang ML, Kwok WM. A long lasting sunscreen controversy of 4-aminobenzoic acid and 4-dimethylaminobenzaldehyde derivatives resolved by ultrafast spectroscopy combined with density functional theoretical study. Phys Chem Chem Phys 2020; 22:8006-8020. [PMID: 32239002 DOI: 10.1039/c9cp07014a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-Aminobenzoic acid (PABA) is one of the earliest patented and most commonly used sunscreen components. There is however a long-lasting controversy on its photo-protective efficacy owing to the lack of information on its protolytic equilibrium and photo-dynamics after absorption of ultraviolet radiation in physiologically relevant aqueous solution. The excitation dynamics in water also remains largely unknown for analogs of PABA such as 4-dimethylaminoacetophenone (DMAAP) and 4-dimethylaminobenzaldehyde (DMABA) which are recognized as prototypes for photo-induced twisted intramolecular charge transfer (TICT). Herein we report a combined application of femtosecond broadband time-resolved fluorescence and transient absorption coupled with density functional theoretical study for PABA, DMAAP, and DMABA under several solvent conditions with representative properties in terms of the pH, polarity and hydrogen bonding capacity. The results we gained demonstrate that, in a neutral aqueous solution, PABA taking the deprotonated anion form in the ground state undergoes rapid protonation after excitation, producing excited state species in the neutral form that may shift effectively by intersystem crossing (ISC) to the long-lasting triplet state capable of damaging nucleic acids. This provides evidence at the molecular level for the detrimental effect of PABA if used as a sunscreen ingredient. In contrast, our investigation on DMAAP and DMABA unveils an unusual solvent controlled deactivation dynamics rendered by the participation of the carbonyl oxygen associated nOπ* state featuring energy and structure strongly responsive to solvent properties. In particular, these molecules in water exhibit solute-solvent hydrogen bonding at the sites of the carbonyl oxygen and the amino nitrogen which is, respectively, weakened and strengthened after the excitation, leading to state reversal and formation of a nOπ* state with a peculiar non-planar structure. This quenches strongly the excitation, eliminates the TICT, suppresses the ISC and opens up the otherwise inaccessible internal conversion (IC) to account for ∼80% of the entire deactivation. The IC, observed to proceed at a rate of ∼2.5 ps, allows the effective recovery of the ground state, providing substantial protection against ultraviolet irradiation. Moreover, the revelation of highly solvent sensitive fluorescence emission from DMABA and DMAAP implies the potential application of these molecules as the functional element in the design of sensory materials for probing the polarity and hydrogen bonding character of the surrounding environment.
Collapse
Affiliation(s)
- Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Hui-Min Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Han-Xin Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
4
|
Feng W, Wang T, Testoff TT, Bridgmohan CN, Zhao C, Sun H, Hu W, Li W, Liu D, Wang L, Zhou X. Exploiting singlet excited state conformation for rational design of highly efficient photoinduced electron transfer molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118016. [PMID: 31923789 DOI: 10.1016/j.saa.2019.118016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
In spite of the pivotal role of excited state electronic structures as regulation of photoinduced electron transfer (PET) process, the effect of excited state conformation on PET remains elusive. Here we exploit distinguishable emission characters of trans and cis singlet excited states of donor-acceptor-donor ensemble MTPAAZO to reveal that its PET efficiency and rate are closely depended on its singlet excited state conformation. The PET process occurs solely in cis conformation of MTPAAZO singlet excited states. Novel molecule (MTPA)2Ab as-designed with similar structure of MTPAAZO cis singlet excited states shows high PET efficacy and rate, leading to long-lived CS states. Our findings enable the rational design of the novel molecules with highly efficient PET process suitable for charge separation applications.
Collapse
Affiliation(s)
- Wenhui Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China
| | - Tianyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Thomas T Testoff
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, United States
| | - Chelsea N Bridgmohan
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, United States
| | - Chuanwu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China
| | - Haiya Sun
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Wei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China
| | - Dongzhi Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China
| | - Lichang Wang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China; Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, United States.
| | - Xueqin Zhou
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
5
|
Experimental and theoretical studies of imidazole based chemosensor for Palladium and their biological applications. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Chang XP, Fang YG, Cui G. QM/MM Studies on the Photophysical Mechanism of a Truncated Octocrylene Model. J Phys Chem A 2019; 123:8823-8831. [PMID: 31550143 DOI: 10.1021/acs.jpca.9b07280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methyl 2-cyano-3,3-diphenylacrylate (MCDPA) shares the same molecular skeleton with octocrylene (OCR) that is one of the most common molecules used in commercially available sunscreens. However, its excited-state relaxation mechanism is unclear. Herein, we have used the QM(CASPT2//CASSCF)/MM method to explore spectroscopic properties, geometric and electronic structures, relevant conical intersections and crossing points, and excited-state relaxation paths of MCDPA in methanol solution. We found that in the Franck-Condon (FC) region, the V(1ππ*) state is energetically lower than the V'(1ππ*) state only by 2.8 kcal/mol and is assigned to experimentally observed maximum absorption band. From these two initially populated singlet states, there exist three nonradiative relaxation paths to repopulate the S0 state. In the first one, when the V(1ππ*) state is populated in the FC region, the system diabatically evolves along the V(1ππ*) state into its minimum where the internal conversion to S0 occurs. In the second one, the V'(1ππ*) state is populated in the FC region and the system adiabatically overcomes a barrier of ca. 3.0 kcal/mol to approach the V(1ππ*) minimum eventually leading to a V(1ππ*)-to-S0 internal conversion. In the third one, the V'(1ππ*) state first hops via the intersystem crossing to the T2 state, which then decays through the internal conversion to the T1 state. The T1 state is finally converted to the S0 state via the T1/S0 crossing point. Our present work contributes to understanding the photophysics of OCR and its variants.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , P. R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
7
|
Zhou Z, Wang X, Chen J, Xu J. Direct observation of an intramolecular charge transfer state in epigenetic nucleobase N6-methyladenine. Phys Chem Chem Phys 2019; 21:6878-6885. [PMID: 30887998 DOI: 10.1039/c9cp00325h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
N6-Methyladenine (6MeAde), the most abundant internal modification in mRNA, has proved to be an important epigenetic biomarker for gene regulation just like 5-methylcytosine in DNA. Recently, a unique UV-induced response of 6MeAde was reported, which makes it instructive and intriguing to reveal the excited state relaxation mechanism in this methylated adenine and its derivatives. In this work, we investigated 6MeAde and its ribose species N6-methyladenosine (6MeAdo) by using femtosecond time-resolved fluorescence up-conversion (FUC) and broadband transient absorption (TA) spectroscopy. Both 6MeAde and 6MeAdo exhibit a hundreds of femtoseconds lifetime, which originates from the efficient depletion of the ππ* (La) state. A several picoseconds lifetime is also observed and it should be attributed to the ππ* (Lb) state. Surprisingly, dual peak fluorescence emission is observed in 6MeAde and the long wavelength emission is ascribed to an intramolecular charge transfer (ICT) state. The lifetime of this ICT state is determined to be 107 ps. The kinetic isotope effect shows that the ICT state is closely associated with the solute-solvent H-bonding in aqueous solution. In 6MeAdo, the ICT state is apparently quenched and adenine-like excited state dynamics suggests that DNA/RNA containing such modification could still possess excellent photostability under UV irradiation. Our results contain an important insight for understanding excited state properties in epigenetic modified DNA/RNA.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | | | | | | |
Collapse
|
8
|
Angiolini L, Cohen B, Douhal A. Ultrafast dynamics of the antibiotic Rifampicin in solution. Photochem Photobiol Sci 2019; 18:80-91. [DOI: 10.1039/c8pp00192h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast time-resolved studies demonstrate that intra- and intermolecular H-bonds with water molecules act synergistically to stabilize the active zwitterionic form of Rifampicin, an effective antibiotic against mycobacterial infections.
Collapse
Affiliation(s)
- Lorenzo Angiolini
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| | - Boiko Cohen
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| | - Abderrazzak Douhal
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| |
Collapse
|
9
|
Ma C, Chan CTL, Chan RCT, Wong AKW, Chung BPY, Kwok WM. Photoprotection or photodamage: a direct observation of nonradiative dynamics from 2-ethylhexyl 4-dimethylaminobenzoate sunscreen agent. Phys Chem Chem Phys 2018; 20:24796-24806. [PMID: 30229763 DOI: 10.1039/c8cp04447c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being an analogue of the prototype for photoinduced intramolecular charge transfer (ICT), 2-ethylhexyl 4-dimethylaminobenzoate (EHDMABA) is also one of the earliest patented and most commonly used sunscreen components. There is, however, little documented information about the photophysics and factors affecting the photophysics of this molecule. Such information is of importance for both the understanding of the ICT reaction and assessing the underlying process of photoprotection, especially in view of the "sunscreen controversy" that has arisen from the contrasting in vivo vs. in vitro photobiological results on this and related UV filters. We report herein a femtosecond broadband time-resolved fluorescence (fs-TRF), complemented by transient absorption (fs-TA) to allow a full probe of the excited state cascades for EHDMABA and two of its derivatives in solvents of varied properties. The results provide direct evidence for a nearly solvent independent inner sphere ICT reaction occurring on the sub-picosecond time scale, and an ensuing solvent dictated deactivation of the ICT state. The ICT state in the aprotic solvent acetonitrile decayed solely through the intrinsic intersystem crossing (ISC) to produce a potentially harmful triplet excited state. In the protic solvent, the solvation and formation of ICT-induced solute-solvent hydrogen (H)-bonding opened the originally inaccessible internal conversion (IC) channel of the ICT state, leading to the rapid reformation of the ground state molecule with a unitary efficiency in the aqueous solution. This H-bonding-mediated IC restrained or eliminated the intrinsic ISC, providing a mechanism at the molecular level for the benign dissipation of the electronic excitation. The precise rate of IC was observed to vary with the alkoxy substituent and its efficiency was affected by the H-bonding capacity of the solvent. The findings of this work demonstrate the pivotal role of the microenvironment and the direct participation of solvent molecules through H-bonding in drastically altering the nonradiative dynamics and promoting or inhibiting photostability and photoprotection. This may assist in developing next-generation UV filters and help in improving formulation design for the optimal efficacy of sunscreen products. The pronounced H-bonding-induced fluorescence quenching and variation in the fluorescence wavelength imply that these molecules may also serve as a sensitive fluorescence probe for the H-bonding properties of the microenvironment.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | | | | | | | | | | |
Collapse
|