1
|
Turbant F, Machiels Q, Waeytens J, Wien F, Arluison V. The Amyloid Assembly of the Bacterial Hfq Is Lipid-Driven and Lipid-Specific. Int J Mol Sci 2024; 25:1434. [PMID: 38338713 PMCID: PMC10855545 DOI: 10.3390/ijms25031434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Quentin Machiels
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; (Q.M.); (J.W.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; (Q.M.); (J.W.)
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France;
- SDV Department, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
2
|
Quiñones-Ruiz T, Rosario-Alomar MF, Shanmugasundaram M, Ali MM, Lednev IK. Spontaneous Refolding of Amyloid Fibrils from One Polymorph to Another Caused by Changes in Environmental Hydrophobicity. Biochemistry 2022; 61:1456-1464. [PMID: 35786852 DOI: 10.1021/acs.biochem.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report a new phenomenon in which lysozyme fibrils formed in a solution of acetic acid spontaneously refold to a different polymorph through a disassembled intermediate upon the removal of acetic acid. The structural changes were revealed and characterized by deep-UV resonance Raman spectroscopy, nonresonance Raman spectroscopy, intrinsic tryptophan fluorescence spectroscopy, and atomic force microscopy. A PPII-like structure with highly solvent-exposed tryptophan residues predominates the intermediate aggregates before refolding to polymorph II fibrils. Furthermore, the disulfide (SS) bonds undergo significant rearrangements upon the removal of acetic acid from the lysozyme fibril environment. The main SS bond conformation changes from gauche-gauche-trans in polymorph I to gauche-gauche-gauche in polymorph II. Changing the hydrophobicity of the fibril environment was concluded to be the decisive factor causing the spontaneous refolding of lysozyme fibrils from one polymorph to another upon the removal of acetic acid. Potential biological implications of the discovered phenomenon are discussed.
Collapse
Affiliation(s)
- Tatiana Quiñones-Ruiz
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, United States
| | | | | | - Muhammad M Ali
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, United States
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|
3
|
Morzy D, Rubio-Sánchez R, Joshi H, Aksimentiev A, Di Michele L, Keyser UF. Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures. J Am Chem Soc 2021; 143:7358-7367. [PMID: 33961742 PMCID: PMC8154537 DOI: 10.1021/jacs.1c00166] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The interplay between nucleic acids
and lipids underpins several
key processes in molecular biology, synthetic biotechnology, vaccine
technology, and nanomedicine. These interactions are often electrostatic
in nature, and much of their rich phenomenology remains unexplored
in view of the chemical diversity of lipids, the heterogeneity of
their phases, and the broad range of relevant solvent conditions.
Here we unravel the electrostatic interactions between zwitterionic
lipid membranes and DNA nanostructures in the presence of physiologically
relevant cations, with the purpose of identifying new routes to program
DNA–lipid complexation and membrane-active nanodevices. We
demonstrate that this interplay is influenced by both the phase of
the lipid membranes and the valency of the ions and observe divalent
cation bridging between nucleic acids and gel-phase bilayers. Furthermore,
even in the presence of hydrophobic modifications on the DNA, we find
that cations are still required to enable DNA adhesion to liquid-phase
membranes. We show that the latter mechanism can be exploited to control
the degree of attachment of cholesterol-modified DNA nanostructures
by modifying their overall hydrophobicity and charge. Besides their
biological relevance, the interaction mechanisms we explored hold
great practical potential in the design of biomimetic nanodevices,
as we show by constructing an ion-regulated DNA-based synthetic enzyme.
Collapse
Affiliation(s)
- Diana Morzy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Roger Rubio-Sánchez
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lorenzo Di Michele
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
4
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
5
|
Highlighting the effect of amyloid beta assemblies on the mechanical properties and conformational stability of cell membrane. J Mol Graph Model 2020; 100:107670. [PMID: 32711259 DOI: 10.1016/j.jmgm.2020.107670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognitive function due to the abnormal aggregation and deposition of Amyloid beta (Aβ) fibrils in the brain of patients. In this context, the molecular mechanisms of protein misfolding and aggregation that are known to induce significant biophysical alterations in cells, including destabilization of plasma membranes, remain partially unclear. Physical interaction between the Aβ assemblies and the membrane leads to the disruption of the cell membrane in multiple ways including, surface carpeting, generation of transmembrane channels and detergent-like membrane dissolution. Understanding the impact of amyloidogenic protein in different stages of aggregation with the plasma membrane, plays a crucial role to fully elucidate the pathological mechanisms of AD. Within this framework, computer simulations represent a powerful tool able to shed lights on the interactions governing the structural influence of Aβ proteins on biological membrane. In this study, molecular dynamics (MD) simulations have been performed in order to characterize how POPC bilayer conformational and mechanical properties are affected by the interaction with Aβ11-42 peptide, oligomer and fibril.
Collapse
|
6
|
The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. PLoS Comput Biol 2020; 16:e1007767. [PMID: 32365068 PMCID: PMC7282669 DOI: 10.1371/journal.pcbi.1007767] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Many proteins have the potential to aggregate into amyloid fibrils, protein polymers associated with a wide range of human disorders such as Alzheimer’s and Parkinson’s disease. The thermodynamic stability of amyloid fibrils, in contrast to that of folded proteins, is not well understood: the balance between entropic and enthalpic terms, including the chain entropy and the hydrophobic effect, are poorly characterised. Using a combination of theory, in vitro experiments, simulations of a coarse-grained protein model and meta-data analysis, we delineate the enthalpic and entropic contributions that dominate amyloid fibril elongation. Our prediction of a characteristic temperature-dependent enthalpic signature is confirmed by the performed calorimetric experiments and a meta-analysis over published data. From these results we are able to define the necessary conditions to observe cold denaturation of amyloid fibrils. Overall, we show that amyloid fibril elongation is associated with a negative heat capacity, the magnitude of which correlates closely with the hydrophobic surface area that is buried upon fibril formation, highlighting the importance of hydrophobicity for fibril stability. Most proteins fold in the cell into stable, compact structures. Nevertheless, many proteins also have the ability to stick together, forming long fibrillar structures that are associated with a wide range of human disorders including Alzheimer’s and Parkinson’s disease. The exact nature of the amyloid-causing stickiness is not well understood, nevertheless amyloid fibrils show some very specific thermodynamic characteristics. Some fibrils even destabilise at low temperatures. In this work we translate hydrophobic theory previously used to model protein folding to fibril formation. We combine this theory with experimental measurements, simulations and meta-data analysis of different types of fibrils. This allowed us to unravel the nature of the stickiness in amyloid fibrils by observing the effect of temperature changes, specifically at low temperatures, on hydrophobicity.
Collapse
|
7
|
Rao E, Foderà V, Leone M, Vetri V. Direct observation of alpha-lactalbumin, adsorption and incorporation into lipid membrane and formation of lipid/protein hybrid structures. Biochim Biophys Acta Gen Subj 2019; 1863:784-794. [PMID: 30742952 DOI: 10.1016/j.bbagen.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (α-La). α-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize α-La-membrane mechanisms of interaction and α-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imaging, we are able to distinguish between protein adsorption and insertion in the membranes. Our results indicate that, upon addition of α-La to giant vesicles samples, protein is inserted into the lipid bilayer with rates that are concentration-dependent. The formation of heterogeneous hybrid protein-lipid co-aggregates, paralleled with protein conformational and structural changes, alters the membrane structure and morphology, leading to an increase in membrane fluidity.
Collapse
Affiliation(s)
- Estella Rao
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, Universitetsparken 2, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Maurizio Leone
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
8
|
Ricci C, Maccarini M, Falus P, Librizzi F, Mangione MR, Moran O, Ortore MG, Schweins R, Vilasi S, Carrotta R. Amyloid β-Peptide Interaction with Membranes: Can Chaperones Change the Fate? J Phys Chem B 2018; 123:631-638. [DOI: 10.1021/acs.jpcb.8b11719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Caterina Ricci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60122, Italy
| | - Marco Maccarini
- Université Grenoble Alpes—Laboratoire TIMC/IMAG UMR CNRS 5525, Grenoble 38000, France
| | - Peter Falus
- Science Division, Institut Laue-Langevin, Grenoble Cedex 9 38042, France
| | | | | | - Oscar Moran
- Istituto di Biofisica, CNR, Genova 16149, Italy
| | - Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60122, Italy
| | - Ralf Schweins
- Science Division, Institut Laue-Langevin, Grenoble Cedex 9 38042, France
| | | | | |
Collapse
|