1
|
Aoyama M, Katayama K, Kandori H. Unique hydrogen-bonding network in a viral channelrhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149148. [PMID: 38906314 DOI: 10.1016/j.bbabio.2024.149148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Channelrhodopsins (CRs) are used as key tools in optogenetics, and novel CRs, either found from nature or engineered by mutation, have greatly contributed to the development of optogenetics. Recently CRs were discovered from viruses, and crystal structure of a viral CR, OLPVR1, reported a very similar water-containing hydrogen-bonding network near the retinal Schiff base to that of a light-driven proton-pump bacteriorhodopsin (BR). In both OLPVR1 and BR, nearly planar pentagonal cluster structures are comprised of five oxygen atoms, three oxygens from water molecules and two oxygens from the Schiff base counterions. The planar pentagonal cluster stabilizes a quadrupole, two positive charges at the Schiff base and an arginine, and two negative charges at the counterions, and thus plays important roles in light-gated channel function of OLPVR1 and light-driven proton pump function of BR. Despite similar pentagonal cluster structures, present FTIR analysis revealed different hydrogen-bonding networks between OLPVR1 and BR. The hydrogen bond between the protonated Schiff base and a water is stronger in OLPVR1 than in BR, and internal water molecules donate hydrogen bonds much weaker in OLPVR1 than in BR. In OLPVR1, the bridged water molecule between the Schiff base and counterions forms hydrogen bonds to D76 and D200 equally, while the hydrogen-bonding interaction is much stronger to D85 than to D212 in BR. The present interpretation is supported by the mutation results, where D76 and D200 equally work as the Schiff base counterions in OLPVR1, but D85 is the primary counterion in BR. This work reports highly sensitive hydrogen-bonding network in the Schiff base region, which would be closely related to each function through light-induced alterations of the network.
Collapse
Affiliation(s)
- Mako Aoyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
2
|
Tomida S, Wada A, Furutani Y. Protonation of Asp116 and distortion of the all-trans retinal chromophore in Krokinobacter eikastus rhodopsin 2 causes a redshift in absorption maximum upon dehydration. Photochem Photobiol Sci 2023; 22:2499-2517. [PMID: 37498510 DOI: 10.1007/s43630-023-00464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Water is usually indispensable for protein function. For ion-pumping rhodopsins, water molecules inside the proteins play an important role in ion transportation. In addition to amino acid residues, water molecules regulate the colors of retinal proteins. It was reported that a sodium-pumping rhodopsin, Krokinobacter eikastus rhodopsin 2 (KR2), showed a color change from red to purple upon dehydration under crystalline conditions. Here, we applied comprehensive visible and IR absorption spectroscopy and resonance Raman spectroscopy to KR2 in liposomes under hydration-controlled conditions. A large increase in the hydrogen-out-of-plane (HOOP) vibration at 947 (H-C11=C12-H Au mode) and moderate increases at 893 (C7-H and C10-H) and 808 (C14-H) cm-1 were observed under dehydrated conditions, which were assigned by using systematically deuterated retinal. Moreover, the Asn variant at Asp116, which functions as a counter ion for the protonated retinal Schiff base (PRSB), caused a large redshift in the absorption maximum and constitutive increase in the HOOP modes under hydrated and dehydrated conditions. The protonation of a counter ion at Asp116 clearly causes a redshift in the absorption maximum as the all-trans retinal chromophore twists upon dehydration. Namely, the results strongly suggested that water molecules are important for maintaining the hydrogen-bonding network at the PRSB and deprotonation state of Asp116 in KR2.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
3
|
Hanai S, Nagata T, Katayama K, Inukai S, Koyanagi M, Inoue K, Terakita A, Kandori H. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Biochemistry 2023; 62:1347-1359. [PMID: 37001008 DOI: 10.1021/acs.biochem.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.
Collapse
|
4
|
Otomo A, Mizuno M, Inoue K, Kandori H, Mizutani Y. Protein dynamics of a light-driven Na + pump rhodopsin probed using a tryptophan residue near the retinal chromophore. Biophys Physicobiol 2023; 20:e201016. [PMID: 38362331 PMCID: PMC10865881 DOI: 10.2142/biophysico.bppb-v20.s016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 02/17/2024] Open
Abstract
Direct observation of protein structural changes during ion transport in ion pumps provides valuable insights into the mechanism of ion transport. In this study, we examined structural changes in the light-driven sodium ion (Na+) pump rhodopsin KR2 on the sub-millisecond time scale, corresponding with the uptake and release of Na+. We compared the ion-pumping activities and transient absorption spectra of WT and the W215F mutant, in which the Trp215 residue located near the retinal chromophore on the cytoplasmic side was replaced with a Phe residue. Our findings indicated that atomic contacts between the bulky side chain of Trp215 and the C20 methyl group of the retinal chromophore promote relaxation of the retinal chromophore from the 13-cis to the all-trans form. Since Trp215 is conserved in other ion-pumping rhodopsins, the present results suggest that this residue commonly acts as a mechanical transducer. In addition, we measured time-resolved ultraviolet resonance Raman (UVRR) spectra to show that the environment around Trp215 becomes less hydrophobic at 1 ms after photoirradiation and recovers to the unphotolyzed state with a time constant of around 10 ms. These time scales correspond to Na+ uptake and release, suggesting evolution of a transient ion channel at the cytoplasmic side for Na+ uptake, consistent with the alternating-access model of ion pumps. The time-resolved UVRR technique has potential for application to other ion-pumping rhodopsins and could provide further insights into the mechanism of ion transport.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Present address: Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Science, Okazaki, Aichi 444-8787, Japan
- Present address: Department of Functional Molecular Science, School of Physical Science, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Chemistry, Graduate School of Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
6
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
7
|
Shionoya T, Singh M, Mizuno M, Kandori H, Mizutani Y. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Biochemistry 2021; 60:3050-3057. [PMID: 34601881 DOI: 10.1021/acs.biochem.1c00529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transmembrane proton gradient is generated and maintained by proton pumps in a cell. Metagenomics studies have recently identified a new category of rhodopsin intermediates between type-1 rhodopsins and heliorhodopsins, named schizorhodopsins (SzRs). SzRs are light-driven inward proton pumps. Comprehensive resonance Raman measurements were conducted to characterize the structure of the retinal chromophore in the unphotolyzed state of four SzRs. The spectra of all four SzRs show that the retinal chromophore is in the all-trans and 15-anti configuration and that the Schiff base is protonated. The polyene chain is planar in the center of the retinal chromophore and is twisted in the vicinity of the protonated Schiff base. The protonated Schiff base in the SzRs forms a stronger hydrogen bond than that in outward proton-pumping rhodopsins. We determined that the hydrogen-bonding partner of the protonated Schiff base is not a water molecule but an amino acid residue, presumably an Asp residue in helix G. The present observations provide valuable insights into the inward proton-pumping mechanism of SzRs.
Collapse
Affiliation(s)
- Tomomi Shionoya
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Cho SG, Shim JG, Choun K, Meas S, Kang KW, Kim JH, Cho HS, Jung KH. Discovery of a new light-driven Li +/Na +-pumping rhodopsin with DTG motif. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112285. [PMID: 34411952 DOI: 10.1016/j.jphotobiol.2021.112285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Microbial pumping rhodopsin is a seven-transmembrane retinal binding protein, which is light-driven ion pump with a functional key motif. Ion-pumping with the key motif and charged amino acids in the rhodopsin is biochemically important. The rhodopsins with DTG motif have been discovered in various eubacteria, and they function as H+ pump. Especially, the DTG motif rhodopsins transported H+ despite the replacement of a proton donor by Gly. We investigated Methylobacterium populi rhodopsin (MpR) in one of the DTG motif rhodopsin clades. To determine which ions the MpR transport, we tested with various monovalent ion solutions and determined that MpR transports Li+/Na+. By replacing the three negatively charged residues residues which are located in helix B, Glu32, Glu33, and Asp35, we concluded that the residues play a critical role in the transport of Li+/Na+. The MpR E33Q transported H+ in place of Li+/Na+, suggesting that Glu33 is a Li+/Na+ binding site on the cytoplasmic side. Gly93 in MpR was replaced by Asp to convert from the Li+/Na+ pump to the H+ pump, resulting in MpR G93D transporting H+. Dissociation constant (Kd) values of Na+ for MpR WT and E33Q were determined to be 4.0 and 72.5 mM, respectively. These results indicated the mechanism by which MpR E33Q transports H+. Up to now, various ion-pumping rhodopsins have been discovered, and Li+/Na+-pumping rhodopsins were only found in the NDQ motif in NaR. Here, we report a new light-driven Na+ pump MpR and have determined the important residues required for Li+/Na+-pumping different from previously known NaR.
Collapse
Affiliation(s)
- Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Kimleng Choun
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea; Department of Biology, Faculty of Science, Royal University of Phnom Penh, Phnom Penh 12000, Cambodia
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun-Suk Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
9
|
Tomida S, Kitagawa S, Kandori H, Furutani Y. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. J Phys Chem B 2021; 125:8331-8341. [PMID: 34292728 DOI: 10.1021/acs.jpcb.1c01907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heliorhodopsin (HeR) is a new class of the rhodopsin family discovered in 2018 through functional metagenomic analysis (named 48C12). Similar to typical microbial rhodopsins, HeR possesses seven transmembrane (TM) α-helices and an all-trans-retinal covalently bonded to the lysine residue on TM7 via a protonated Schiff base. Remarkably, the HeR membrane topology is inverted compared with that of typical microbial rhodopsins. The X-ray crystal structure of HeR 48C12 was elucidated after the first report on a HeR variant from Thermoplasmatales archaeon SG8-52-1, which revealed the water-mediated hydrogen-bonding network connected to the Schiff base region in the cytoplasmic side. Herein, low-temperature light-induced FTIR spectroscopic analyses of HeR 48C12 and 15N isotopically labeled proteins were used to elucidate the structural changes during retinal photoisomerization. N-D stretching vibrations of the protonated retinal Schiff base (PRSB) at 2286 and 2302 cm-1 in the dark state, and 2239 and 2252 cm-1 in the K intermediate were observed. The frequency changes indicated that the hydrogen bond of PRSB strengthens upon photoisomerization in HeR. Moreover, O-D stretching vibration frequencies of the internal water molecules indicate that the hydrogen-bonding strength decreases concomitantly. Therefore, the PRSB hydrogen bond responds to photoisomerization in an opposite way to the hydrogen-bonding network involving water molecules. No frequency changes of the indole N-H or N-D stretching vibrations of tryptophan residues were observed upon photoisomerization, suggesting that all tryptophan residues in the HeR 48C12 maintained the hydrogen-bonding strengths in the K intermediate. These results provide insights into the molecular mechanism of the energy storage and propagation upon retinal photoisomerization in HeR.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Abstract
Schizorhodopsins (SzRs), a new rhodopsin family identified in Asgard archaea, are phylogenetically located at an intermediate position between type-1 microbial rhodopsins and heliorhodopsins. SzRs work as light-driven inward H+ pumps as xenorhodopsins in bacteria. Although E81 plays an essential role in inward H+ release, the H+ is not metastably trapped in such a putative H+ acceptor, unlike the other H+ pumps. It remains elusive why SzR exhibits different kinetic behaviors in H+ release. Here, we report the crystal structure of SzR AM_5_00977 at 2.1 Å resolution. The SzR structure superimposes well on that of bacteriorhodopsin rather than heliorhodopsin, suggesting that SzRs are classified with type-1 rhodopsins. The structure-based mutagenesis study demonstrated that the residues N100 and V103 around the β-ionone ring are essential for color tuning in SzRs. The cytoplasmic parts of transmembrane helices 2, 6, and 7 are shorter than those in the other microbial rhodopsins, and thus E81 is located near the cytosol and easily exposed to the solvent by light-induced structural change. We propose a model of untrapped inward H+ release; H+ is released through the water-mediated transport network from the retinal Schiff base to the cytosol by the side of E81. Moreover, most residues on the H+ transport pathway are not conserved between SzRs and xenorhodopsins, suggesting that they have entirely different inward H+ release mechanisms.
Collapse
|
11
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
12
|
Tomida S, Ito S, Mato T, Furutani Y, Inoue K, Kandori H. Infrared spectroscopic analysis on structural changes around the protonated Schiff base upon retinal isomerization in light-driven sodium pump KR2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148190. [DOI: 10.1016/j.bbabio.2020.148190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/30/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|