1
|
Vilà A, González M. Quantum dynamics of the Br 2 (B-excited state) photodissociation in superfluid helium nanodroplets: importance of the recombination process. Phys Chem Chem Phys 2022; 24:24353-24361. [PMID: 36178095 DOI: 10.1039/d2cp02984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the Br2 photodissociation dynamics (B ← X electronic transition) of Br2(v = 0, X)@(4He)N doped nanodroplets (T = 0.37 K) at zero angular momentum, with N in the 100-1000 interval. To do this, we have used a quantum mechanical hybrid strategy proposed by us and, as far as we know, this is the second quantum dynamics study available on the photodissociation of molecules in superfluid helium nanodroplets. While the results obtained for some properties are qualitatively similar to those reported previously by us for the Cl2(B ← X) related case (in particular, the oscillating Br final velocity distribution which also arises from quantum interferences), large differences are evident in three key properties: the photodissociation mechanism and probability and the time scale of the process. This can be interpreted on the basis of the significantly lower excitation energy achieved by the Br2(B ← X) transition and the higher reduced mass of Br-Br in comparison to the chlorine case. The Br2(B) photodissociation dynamics is significantly more complex than that of Cl2(B) and leads to the fragmentation of the initial wave packet. Thus, the probability of non-dissociation is equal to 17, 18, 51, 85 and 100% for N = 100, 200, 300, 500 and 1000, respectively, while for chlorine this probability is equal to zero. In spite of the very large experimental difficulties that exist for obtaining nanodroplets with a well defined size, we hope that these results will encourage experimentalists to investigate these interesting systems.
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - Miguel González
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Briant M, Mestdagh JM, Gaveau MA, Poisson L. Reaction dynamics within a cluster environment. Phys Chem Chem Phys 2022; 24:9807-9835. [PMID: 35441619 DOI: 10.1039/d1cp05783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective article reviews experimental and theoretical works where rare gas clusters and helium nanodroplets are used as a nanoreactor to investigate chemical dynamics in a solvent environment. A historical perspective is presented first followed by specific considerations on the mobility of reactants within these reaction media. The dynamical response of pure clusters and nanodroplets to photoexcitation is shortly reviewed before examining the role of the cluster (or nanodroplet) degrees of freedom in the photodynamics of the guest atoms and molecules.
Collapse
Affiliation(s)
- Marc Briant
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Marc-André Gaveau
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | - Lionel Poisson
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| |
Collapse
|
3
|
Blancafort-Jorquera M, González M. Vibrational energy relaxation of a diatomic molecule in a superfluid helium nanodroplet: influence of the nanodroplet size, interaction energy and energy gap. Phys Chem Chem Phys 2021; 23:25961-25973. [PMID: 34783338 DOI: 10.1039/d1cp03629g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the nanodroplet size, molecule-helium interaction potential energy and ν = 1 - ν = 0 vibrational energy gap on the vibrational energy relaxation (VER) of a diatomic molecule (X2) in a superfluid helium nanodroplet [HeND or (4He)N; finite quantum solvent at T = 0.37 K] has been studied using a hybrid quantum approach recently proposed by us and taking as a reference the VER results on the I2@(4He)100 doped nanodroplet (Vilà et al., Phys. Chem. Chem. Phys., 2018, 20, 118, which corresponds to the first theoretical study on the VER of molecules embedded in a HeND). This has allowed us to obtain a deeper insight into the vibrational relaxation dynamics. The nanodroplet size has a very small effect on the VER, as this process mainly depends on the interaction between the molecule and the nanodroplet first solvation shell. Regarding the interaction potential energy and the energy gap, both factors play an important and comparable role in the VER time properties (global relaxation time, lifetime and transition time). As the former becomes stronger the relaxation time properties decrease in a significant way (their inverse follows a linear dependence with respect to the ν = 1 - ν = 0 coupling term) and they also decrease in a significant manner when the energy gap diminishes (linear dependence on the ν = 1 - ν = 0 energy difference). We expect that this study will motivate further work on the vibrational relaxation process in HeNDs.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - Miguel González
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Panzou R, Lewerenz M. Photofragmentation of I2 molecules inside helium clusters: model calculations using a quantum effective potential. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1977862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Roland Panzou
- Laboratoire Modélisation et Simulation Multi Echelle, MSME, Univ. Gustave Eiffel, CNRS UMR 8208, Univ. Paris Est Créteil, Marne-la-Vallée, France
| | - Marius Lewerenz
- Laboratoire Modélisation et Simulation Multi Echelle, MSME, Univ. Gustave Eiffel, CNRS UMR 8208, Univ. Paris Est Créteil, Marne-la-Vallée, France
| |
Collapse
|
5
|
Thaler B, Meyer M, Heim P, Koch M. Long-Lived Nuclear Coherences inside Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2020; 124:115301. [PMID: 32242724 DOI: 10.1103/physrevlett.124.115301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/06/2020] [Indexed: 05/20/2023]
Abstract
Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical studies so far. Here, we demonstrate that superfluid helium nanodroplets, acting as a thermal bath of 0.4 K temperature to stabilize weakly bound or reactive systems, are well suited for time-resolved studies of single molecules solvated in the droplet interior. By observing vibrational wave packet motion of indium dimers (In_{2}) for tens of picoseconds, we demonstrate that the perturbation imposed by this quantum liquid can be lower by a factor of 10-100 compared to any other solvent, which uniquely allows us to study processes depending on long nuclear coherence in a dissipative environment. Furthermore, tailor-made microsolvation environments inside droplets will enable us to investigate the solvent influence on intramolecular dynamics in a wide tuning range from molecular isolation to strong molecule-solvent coupling.
Collapse
Affiliation(s)
- Bernhard Thaler
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Miriam Meyer
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Pascal Heim
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Markus Koch
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
6
|
Blancafort-Jorquera M, Vilà A, González M. Quantum-classical approach to the reaction dynamics in a superfluid helium nanodroplet. The Ne 2 dimer and Ne-Ne adduct formation reaction Ne + Ne-doped nanodroplet. Phys Chem Chem Phys 2019; 21:24218-24231. [PMID: 31661098 DOI: 10.1039/c9cp04561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the Ne2 dimer and Ne-Ne adduct formation in a superfluid helium nanodroplet [(4He)N; T = 0.37 K], Ne + Ne@(4He)N→ Ne2@(4He)N'/Ne-Ne@(4He)N' + (N-N')4He with N = 500, has been investigated using a hybrid approach (quantum and classical mechanics (QM-CM) descriptions for helium and the Ne atoms, respectively) and taking into account the angular momentum of the attacking Ne atom, Ne(1). Comparison with zero angular momentum QM results of our own shows that the present results are similar to the quantum ones for the initial Ne(1) velocities (v0) of 500 and 800 m s-1 (the former one being the most probable velocity of Ne at 300 K), in all cases leading to the Ne2 dimer (re = 3.09 Å). However, significant differences appear below v0 = 500 m s-1, because in the QM-CM dynamics, instead of the dimer, a Ne-Ne adduct is formed (r0 = 5.45 Å). The formation of this adduct will probably dominate as the contribution to reactivity of angular momenta larger than zero is the leading one and angular momentum strongly acts against the Ne2 production. Angular momentum adds further difficulties in producing the dimer, since it makes it more difficult to remove the helium density between both Ne atoms to lead, subsequently, to the Ne2 molecule. Hence, the formation of the neon-neon adduct, Ne-Ne@(4He)N', clearly dominates the reactivity of the system, which results in the formation of a "quantum gel"/"quantum foam", because the two Ne atoms essentially maintain their identity inside the nanodroplet. Large enough Ne(1) initial angular momentum values can induce the formation of vortex lines by the collapse of superficial excitations (ripplons), but they occur with greater difficulty than in the case of the capture of the Ne atom by a non doped helium nanodroplet, due to the wave interferences induced by the Ne induced by the solvation layers of the Ne atom originally placed inside the nanodroplet. We hope that this work will encourage other researchers to investigate the reaction dynamics in helium nanodroplets, an interesting topic on which there are few studies available.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència de Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
7
|
Valdés Á, Prosmiti R. Quantum effects on the stability of the He 5 I 2 van der Waals conformers. J Comput Chem 2019; 40:2200-2206. [PMID: 31148224 DOI: 10.1002/jcc.25870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/10/2019] [Accepted: 05/16/2019] [Indexed: 11/05/2022]
Abstract
We present 15-dimensional quantum multiconfiguration time-dependent Hartree calculations of the vibrational levels of the He5 I2 van der Waals (vdW) complex employing an ab initio-based potential energy surface (PES). The energies and spatial features of such bound structures are analyzed, providing predictions on the structures and relative stabilities of its three lowest isomers. We found that the most stable isomer corresponds to all five He atoms encircling the I2 molecule, indicating that in this case the anharmonic quantum effects do not stabilize the isomers involving a He atom in a linear configuration as reported previously for the smaller HeN I2 systems. Such finding provides information on the overall structuring of the finite-size-solvent systems, highlighting the intriguing interplay between weak intermolecular interactions and quantum effects. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Álvaro Valdés
- Departamento de Física, Universidad Nacional de Colombia, Calle 26, Cra 39, Edificio 404, Bogotá, Colombia
| | - Rita Prosmiti
- Departamento PAMS, Instituto de Física Fundamental (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
8
|
Blancafort-Jorquera M, Vilà A, González M. Rotational energy relaxation quantum dynamics of a diatomic molecule in a superfluid helium nanodroplet and study of the hydrogen isotopes case. Phys Chem Chem Phys 2019; 21:21007-21021. [PMID: 31528895 DOI: 10.1039/c9cp00952c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rotational energy relaxation (RER) of a molecule X2(j,mj) in a 4He superfluid nanodroplet [HeND or (4He)N; T = 0.37 K] has been investigated using a hybrid quantum dynamics approach recently proposed by us. As far as we know, this is the first theoretical study about rotational relaxation inside HeNDs, and here several (real and hypothetical) isotopes of H2 have been examined, in order to analyze the influence of the rotational constant Be of these fast rotors on the dynamics. The structure of the nanodroplet practically does not change during the RER process, which approximately takes place according to a cascade mechanism j → j - 2; j - 2 → j - 4; …; 2 → 0, and mj is conserved. The results are consistent with the very scarce estimated experimental data available. The lifetime of an excited rotational state (≈1.0-7.6 ns) increases when: (a) Be increases; (b) j increases; and (c) N decreases (above N = 100 there is a small influence of N on the lifetime). This also applies to the global relaxation time and transition time. The analysis of the influence of the coupling between the j and j - 2 rotational states (due to the X2-helium interaction) and the X2 angular velocity on the lifetime and related properties has been helpful to better understand the dynamics. In contrast to the RER results, for the vibrational energy relaxation (VER) in HeNDs, when the quantum number v increases a decrease is observed in the lifetime of the excited vibrational state. This difference can be interpreted taking into account that RER and VER are associated with very different types of motion. Besides, in VER the intermediate excited states show metastability, differing from the RER case. We hope that the present study will encourage more studies to be developed on the RER dynamics in HeNDs, a basic, interesting and difficult to study physical phenomenon about which we still know very little.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència de Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
9
|
Ionization dynamics of Ne-doped helium clusters at low temperature: Ring-polymer molecular dynamics simulations including electronically nonadiabatic transitions. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Blancafort-Jorquera M, Vilà A, González M. Quantum-classical dynamics of the capture of neon atoms by superfluid helium nanodroplets. Phys Chem Chem Phys 2018; 20:29737-29753. [DOI: 10.1039/c8cp05140b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The capture dynamics of Ne by a HeND was studied theoretically in a detailed manner (energy and angular momentum transfer and vortex formation).
Collapse
Affiliation(s)
| | - Arnau Vilà
- Departament de Ciència de Materials i Química Física and IQTC
- Universitat de Barcelona
- Barcelona
- Spain
| | - Miguel González
- Departament de Ciència de Materials i Química Física and IQTC
- Universitat de Barcelona
- Barcelona
- Spain
| |
Collapse
|